Course detail

Electrical Engineering 1

FEKT-KEL1Acad. year: 2011/2012

Informing about the safety rules necessary for a laboratory exercises. Basic laws and quantities in electrical circuits. Properties of elements of the electrical circuits. Power in electrical circuits. Time-varying behaviors of voltages and currents. Methods of analysis of linear resistor circuits. Basic of nonlinear elements and circuits. Magnetic circuits.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Learning outcomes of the course unit

Gaining qualifying grade §4 "worker instructed", necessary according to the notice No. 50/1978 for laboratory works. Knowledge of basic laws and quantities in electrical circuits, properties of electrical circuit elements and their models, power in electrical circuits, time-varying behaviors of voltages and currents. Knowledge of basic methods of analysis of linear resistor circuits and magnetic circuits and partially of nonlinear circuits. Gained knowledge will serve as a grounding in study of following subjects.

Prerequisites

The subject knowledge on the secondary school level is required.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations.

Assesment methods and criteria linked to learning outcomes

Requirements for completion of a course are specified by a regulation issued by the lecturer responsible for the course and updated for every.

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

The provable instructions of students from safety rules necessary for the laboratory exercises and verification according to the notice No. 50/1978. Offering basic knowledge of electrical engineering and circuit theory needed as a
wider scientific basis of further study. To prepare the students for following courses of specialization in electrical engineering. Numerical exercises extend and improve theoretical knowledge, laboratory measurements help to verify some theory in a practical way.

Specification of controlled education, way of implementation and compensation for absences

The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

BRANČÍK, L. Elektrotechnika 1. Elektrotechnika 1. Brno: FEKT VUT v Brně, 2004. s. 1 ( s.)ISBN: 80-214-2607- 1. (CS)
KALÁB, P.; STEINBAUER, M.; VESELÝ, M. Bezpečnost v elektrotechnice. Brno: Ing. Zdeněk Novotný, CSc, Ondráčkova 105, 628 00 Brno, 2009. s. 1-68. ISBN: 978-80-214-3952- 8. (CS)
SEDLÁČEK, J.; STEINBAUER, M.; MURINA, M. Elektrotechnika 1 (BEL1) - laboratorní a počítačová cvičení. Brno: Ing. Zdeněk Novotný, CSc., Ondráčkova 105, 628 00 Brno, 2008. s. 1 ( s.)ISBN: 978-80-214-3706- 7. (CS)
STEINBAUER, M.; KALÁB, P. Bezpečnost v elektrotechnice - pracovní sešit. Brno: CERM Brno, 2007. s. 1-41. (CS)

Recommended reading

MIKULEC, M., HAVLÍČEK, V.: Základy teorie elektrických obvodů. Skriptum ČVUT v Praze, 1997. (CS)
VALSA, J., SEDLÁČEK, J.: Teoretická elektrotechnika I. Skriptum VUT v Brně, 1997. (CS)

Classification of course in study plans

  • Programme EECC Bc. Bachelor's

    branch BK-EST , 1 year of study, winter semester, compulsory
    branch BK-MET , 1 year of study, winter semester, compulsory
    branch BK-TLI , 1 year of study, winter semester, compulsory
    branch BK-SEE , 1 year of study, winter semester, compulsory
    branch BK-AMT , 1 year of study, winter semester, compulsory

  • Programme EEKR-CZV lifelong learning

    branch EE-FLE , 1 year of study, winter semester, compulsory

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

Qualification in electrical engineering, service and work on electrical devices, instructions for movable supplies and flex lines
Safety instructions for service and work on electrical devices, protection against electrical current injury
Basic quantities and laws in electrical circuits
Basic circuit elements and their models
Power in electrical circuit, power matching
Superposition theorem, simplification method, method of proportional quantities, transfiguration
Direct application of Kirchhoff's laws
Loop current analysis
Nodal voltage analysis
Thévenin and Norton theorems, utilization of circuit duality and reciprocity
Magnetic circuits - basic quantities and laws
Analysis of magnetic circuits, graphic methods, loading line method
Magnetic circuits under alternating magnetization, transformers
Introduction to time-varying currents

Exercise in computer lab

13 hod., compulsory

Teacher / Lecturer

Syllabus

Superposition theorem.
Loop current analysis
Thévenin and Norton theorems.

Laboratory exercise

13 hod., optionally

Teacher / Lecturer

Syllabus

1. Thévenin theorem
2. Loop current method