Course detail

Electrical Machines

FEKT-KESBAcad. year: 2011/2012

The basic laws and equations used in the theory of electrical machines. Magnetic circuits of electrical machines. The basic voltage equations, equivalent circuit diagrams, phasor diagrams, the basic electrical connections of electrical machines. Energy and power flow diagrams, losses and efficiency. Torque equation. Electrical machines' performance. Nonsymmetrical loading. Influence of higher harmonics. Basic characteristics of electrical machines.

Language of instruction

Czech

Number of ECTS credits

6

Mode of study

Not applicable.

Learning outcomes of the course unit

The students will be acquainted with the basic knowledge of electromechanical energy conversion, with basic constructional parts of electrical machines and with the principle of electrical machines operation. Single-phase and multiphase transformers. Parallel operation. Three-phase induction motor. Generation of revolving magnetic field. Torque characteristic, starting of induction motors. Single-phase induction motor. Three-phase induction motor on single-phase mains. DC machine principle of operation. DC generators.Performance of DC motors .

Prerequisites

The subject knowledge on the secondary school level is required.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations.

Assesment methods and criteria linked to learning outcomes

Control test - 10 points
Laboratory reports - 10 points
Individual works - 15 points
Final exam - 65 points

Course curriculum

1. Basic laws of electromagnetism related to electrical machines.
2. Principle of electromechanical energy conversion.
3. Transformers. Ideal transformer, actual transformer, basic equations.
4. Principle of operation and construction of power transformers.
5. Three-phase transformers, winding connection, parallel operation.
6. Magnetic circuit and winding of electrical machines.Principle of operation of induction machine, generation of revolving magnetic field.
7. Equivalent circuit diagram, fundamental equations and torque characteristics.
8. Starting of induction machines speed control.
9. Single-phase induction machine. Three-phase induction machine in single-phase mains. The higher harmonics influence.
10. Synchronous machine. Principle of operation and construction.
11. Theory of nonsalient machine. Torque characteristic, synchronous machine with individual load and parallel operation.
12. DC machines. Principle of operation and construction, fundamental equations.
13. DC machines steady -state performance.

Work placements

Not applicable.

Aims

To acquaint the students with the principle of operation and performance of transformers, induction machines, DC machines and synchronous machines. The theoretical knowledge are proved in laboratory excerscises

Specification of controlled education, way of implementation and compensation for absences

The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Fitzgerald,Kingsley,Kusko::Electric Machinery,McGraw-Hill
Měřička,Haňka,Voženílek.::Elektrické stroje,ČVUT Praha
O'Kelly:Performance and Control of Electrical Machines,McGraw-Hill

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme EECC Bc. Bachelor's

    branch BK-SEE , 2 year of study, summer semester, compulsory

  • Programme EEKR-CZV lifelong learning

    branch EE-FLE , 1 year of study, summer semester, compulsory

Type of course unit

 

Lecture

39 hod., optionally

Teacher / Lecturer

Syllabus

1. Basic laws of electromagnetism related to electrical machines.
2. Principle of electromechanical energy conversion.
3. Transformers. Ideal transformer, actual transformer, basic equations.
4. Principle of operation and construction of power transformers.
5. Three-phase transformers, winding connection, parallel operation.
6. Magnetic circuit and winding of electrical machines.Principle of operation of induction machine, generation of revolving magnetic field.
7. Equivalent circuit diagram, fundamental equations and torque characteristics.
8. Starting of induction machines speed control.
9. Single-phase induction machine. Three-phase induction machine in single-phase mains. The higher harmonics influence.
10. Synchronous machine. Principle of operation and construction.
11. Theory of nonsalient machine. Torque characteristic, synchronous machine with individual load and parallel operation.
12. DC machines. Principle of operation and construction, fundamental equations.
13. DC machines steady -state performance.

Laboratory exercise

26 hod., compulsory

Teacher / Lecturer

Syllabus

1. Safety considerations.
2. The main parts of rotary electrical machines. Assembly and disassembly of electrical machines.
3. No load a short circuit transformer test.
4. Winding connection. Load test a efficiency, measurement of a transformer.
5. Three-phase induction motor. Winding connection. No load and blocked rotor test. Induction motor parametr determination.
6. Measurement of induction motor torque charakteric.
7. Induction motor starting.
8. Synchronous machine parallel operating with mains.
9. Measurement of torque characteristics.
10. Parametr determination of synchronous machine with salient poles and with nonsalient rotor.
11. DC machine. No load test. Selfexcitation of shunt generator.
12. Connection of DC motor to mains. Speed control characteristics of DC motors.
13. Evalation.