Course detail
Simulation and Optimalization of Electromechanical System
FEKT-LSIOAcad. year: 2011/2012
The survey of optimatisation methods, stochastic optimization methods and their utilization in electrical engineering. Parameters identification of elektromechanical systems. Artificial networks. Basic theory paradigms, learning algorithms. Artificial neural networks application in prediction and dynamic simulation.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Optimization methods based on artificial inteligence. Genetic algorithm.
Simulated annealing, climbing algorithm.
Principle of electrical machines parameters determination and optimisation.
Neural networks. The basic paradigma multilayer neural networks.
Learning algorithms. Back-propagation.
Recurent Neural Networks
Application of ANN to electrical mechine steady state and transient behaviour.
Radial basis function network (RBFN). Main features of RBFN. Aplication of RBFN to load forecasting.
Adaptively trained neural networks (ATNN). Problem description. Adaptive learning. Adaptive mechanism. Construction of ATNN architecture.
Hybrid fuzzy-neural networks (FNN). Motivation for using hybrid approach. Structure of FNN. Membership functions. Artificial neural networks.
Short therm load forecasting for large distribution system.
Optimization of electrical mechine design using artificial intelligence.
Exercise in computer lab
Teacher / Lecturer
Syllabus
Computer model of neural networks.
Learning algorithms. Back-propagation.