Course detail
Sensor Systems
FEKT-LSSYAcad. year: 2011/2012
Definitions and internal structure of sensors. Sensor signal gathering and processing. Survey of modern sensor types. Semiconductor and microelectronic sensors. SMART sensors. Classification of sensor signals. Distribution of sensor systems. Centralized and decentralized sensor systems. Laboratory measuring system. Distributed industrial sensor systems. Network topology. Fundamental types of industrial sensor systems: PROFIBUS, BITBUS, INTERBUS-S, CAN, DIN-MESSBUS. Measuring system programming. Virtual measuring systems. The LabVIEW system. Signalling technique and safety engineering. Automatized exploitation of data. Introduction to technical diagnostics.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
- Sensor-based systems division. Centralized and decentralized sensor systems. Laboratory measuring systems.
- Measuring systems of an extensive gathering. Examples of the decentralized sensor-based systems. Measuring systems for high sampling rate.
- Introduction to the technical diagnostics. Diagnostic models. Symptomatic methods of recognition. Examples of using in the industrial activities.
- Introduction to the fuzzy logic.
- Introduction to the neural networks.
- Theoretic description of acoustic, mechanical and electromagnetical waves. Waves in an open and closed environment.
- Wave field of more sources. Diffusion through a homogeneous and inhomogeneous medium.
- Sensor arrays, linear and planar. Sources and sensor arrays.
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Technical parameters of sensors. Methods of reducing sensor faults.
Sensors of mechanical, thermic and optical variables.
Semiconductor and microelectronic sensors. SMART sensors.
Sensor signal gathering and processing. Classification of sensor signals.
Distribution of sensor systems. Centralized and decentralized systems.
Laboratory measuring systems. Measuring systems with IEEE 488 bus.
Measuring systems with RS-232 bus. Measuring systems with interface modules.
Industrial distributed sensor systems. Network topology. A RS-485 bus. Methods of medium access control.
Fundamental types of industrial distributed sensor systems: PROFIBUS, BITBUS, INTERBUS-S, CAN, DIN-MESSBUS.
Measuring system programming. Virtual measuring systems. The LavVIEW virtual system.
Signalling technique and safety engineering.
Introduction to technical diagnostics. Modelling and simulation.
Fundamentals seminar
Teacher / Lecturer
Syllabus
Examples of methods of reducing sensor faults. Description of the properties of individual parts of a measuring string with calculations.
Representative numerical examples illustrating the properties of sensors of mechanical, thermic and optical variables.
Calculations of the circuits of sensor signal processing.
Description and examples of measuring systems with IEEE 488 and RS-232 buses.
Introduction to G programming. Examples of virtual instrumentation using the LabVIEW 5.1 system.
Examples of signalling techniques and safety engineering.
Laboratory exercise
Teacher / Lecturer
Syllabus
Properties of mechnical, thermic and optical sensors II.
Properties of the LabVIEW 5.1 system.
Practical exploitation of the LabVIEW 5.1 system.
Properties of safety engineering equipment I.
Properties of safety engineering equipment II.