Course detail

Ceramic Materials

FSI-WPKAcad. year: 2011/2012

Passing through the course students will be able to apply acquired knowledge in the solution of concrete problems of industrial practice particularly the problems connected with the selection of special structural materials. The course provides to students information for next specialized (e.g. PhD) study.

Language of instruction

Czech

Number of ECTS credits

4

Mode of study

Not applicable.

Learning outcomes of the course unit

The course the Advanced ceramic materials connecting on the course Nonmetallic materials has to evolve the knowledges of students about preparation, structure and properties of most important ceramic materials.The lectures offer to students theoretical fundamentals and practical information about concrete applications of ceramic materials. The objective of the course is to provide to students advanced information about ceramic materials for structural, electrotechnical and (bio)mechanical applications from the view of relations between the structure of ceramic materials and their properties.

Prerequisites

The students could pass a test of Nonmetallic materials course and to have knowledges of physics, chemical thermodynamics and kinetics and synthesis of ceramics on the level of introductory university courses.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations.

Assesment methods and criteria linked to learning outcomes

Conditions of credit landing: presence in all practical lessons and fulfilment of given tasks. In the case the student does not fulfill these conditions he can receive, in reasoned cases,compensatory conditions.

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

The course the Advanced ceramic materials connecting on the course Nonmetallic materials has to evolve the knowledges of students about preparation, structure and properties of most important ceramic materials.The lectures offer to students theoretical fundamentals and practical information about concrete applications of ceramic materials. The objective of the course is to provide to students advanced information about ceramic materials for structural, electrotechnical and (bio)mechanical applications from the view of relations between the structure of ceramic materials and their properties.

Specification of controlled education, way of implementation and compensation for absences

Conditions of credit landing: presence in all practical lessons and fulfilment of given tasks. Examination verifies the knowledge of the theory and its applications in solution of practical problems. The exam consists of written and oral parts; a student will pass the oral part even though he does not succeed in the written part.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

D.W.Richerson: Modern Ceramic Engineering,Marcel Dekker,New York 1992
M.W.Barsoum: Fundamentals of Ceramics, IOP Publishing, London 2003
R.W.Cahn, P.Haasen, E.J.Kramer (Eds.): Materials Science and Technology, vol.11-Structure and Properties of Ceramics, WCH, Weinheim 1994
W.D.Kingery, H.K.Bowen, D.R. Uhlmann: Introduction to Ceramics,Wiley, New York 1976

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme N3901-2 Master's

    branch M-MTI , 2 year of study, winter semester, compulsory

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

1. Introduction-classification of ceramic materials
2. Mechanical and thermal properties of ceramic materials, their measurements and tabulation
3. Electrical, magnetic and optical properties of ceramic materials, their measurements and tabulation
4. Influence of time, temperature and surroundings on the properties of ceramic materials
5. Design of ceramic parts-access to the design of ceramic parts, coupling, analysis of damage
6. Alumina ceramics and composite oxides-preparation, structure, properties, applications and corrosion
7. Zirconia ceramics-preparation, structure, properties, applications and corrosion
8. Silicate and phosphate ceramics-preparation, structure, properties, applications and corrosion
9. Silicon carbide ceramics-preparation, structure, properties, applications and corrosion
10. Boron carbide, carbides of heavy metals and borides-preparation, structure, properties, applications
11. Silicon nitride ceramics-preparation, structure, properties, applications and corrosion
12. Sialons, aluminium nitride, boron nitride and nitrides of transition elements-preparation, structure, properties, applications
13. Perovskite ceramics-preparation, structure, properties, applications