Course detail
Numerical Methods II
FSI-SN2Acad. year: 2011/2012
The course represents the second part of an introduction to basic numerical methods and presents further procedures for solution of selected numerical problems frequently used in technical practice. Emphasis is placed on understanding why numerical methods work. Exercises are carried out on computers and are supported by programming environment MATLAB.
Main topics: Eigenvalue problems. Initial value problems for ordinary differential equations. Boundary value problems for ordinary differential problems. Partial differential equations of elliptic, parabolic and hyperbolic type. The students will demonstrate the acquinted knowledge by elaborating at least two semester assignements.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
FORM OF EXAMINATIONS: The exam is oral. As a result of the exam students will obtain 0--70 points.
FINAL ASSESSMENT: The final point course classicifation is the sum of points obtained from both the practisals (0--30) and the exam (0--70).
FINAL COURSE CLASSIFICATION: A (excellent): 100--90, B (very good): 89--80, C (good): 79--70, D (satisfactory): 69--60, E (sufficient): 59--50, F (failed): 49--0.
If we measure the exam success in percentage points, then the classification grades are: A (excellent): 100--90, B (very good): 89--80, C (good): 79--70, D (satisfactory): 69--60, E (sufficient): 59--50, F (failed): 49--0.
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
E. Vitásek: Základy teorie numerických metod pro řešení diferenciálních rovnic. Academia, Praha, 1994.
L.F. Shampine: Numerical Solution of Ordinary Differential Equations, Chapman & Hall, New York, 1994.
M.T. Heath: Scientific Computing. An Introductory Survey. Second edition. McGraw-Hill, New York, 2002.
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Eigenvalue problems: power method, QR method.
3. Eigenvalue problems: Arnoldi method, Jacobi method, bisection method, computing the singular value decomposition.
4. Initial value problems for ODE1: basic notions (truncation error, stability,...)
5. Initial value problems for ODE1: Runge-Kutta methods, step control adjustment.
6. Initial value problems for ODE1: Adams methods, predictor-corrector technique.
7. Initial value problems for ODE1: backward differentiation formulas, stiff problems.
8. Boundary value problems for ODE2: difference method, finite volume method.
9. Boundary value problems for ODE2: finite element method.
10. Elliptic PDEs: difference method, finite volume method.
11. Elliptic PDEs: introduction to the finite element methods.
12. Parabolic PDEs: method of lines, stability of the initial value problem for the system of ODE1, suitable time discretization methods.
13. Hyperbolic PDEs: method of lines, stability of the initial value problem for the system of ODE2, suitable time discretization methods.
Computer-assisted exercise
Teacher / Lecturer
Syllabus