Course detail

Turbomachinery

FSI-LLSAcad. year: 2011/2012

The course is concerned with the application of fundamental physical laws, above all hydromechanics and thermo-mechanics for the design and utilization of a large group of machines. The basic principle of these machines is transformation of thermal, pressure or potential energy into kinetic energy of fluid and the transfer of that energy to the rotor of the machine, and vice versa. Therefore, substantial parts of the course are focused on compressible fluid with high velocity and interactions between a real fluid flowing around or through bodies. Due to the high speed, relatively small machines reach high power outputs. Turbo-machines are used in a great number of applications and in a very extensive range of working conditions. The explanation on physical principles is accompanied with the design of turbo-machines.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Learning outcomes of the course unit

The course makes students familiar with the knowledge about engineering usage of physical laws for construction and use of large group of machines. Students will learn which instruments have to be used by an engineer to reach goals in a best way with respect to the user and economical demands.

Prerequisites

Thermo-mechanics basics. Basics of energy industry.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations.

Assesment methods and criteria linked to learning outcomes

Course-unit credit requirements: Active participation at seminars. Systematic control of continuous study and effort regarding the application of the knowledge acquired at lectures to simple tasks in the area of the design of functional parts of blade machines. Examination is written and oral. The knowledge of used physical laws and their application to specific types of blade machines is tested as well as construction variants of basic functional parts and connections of constructional variant and applied attributes of these machines. Relation of working conditions of blade machines and their constructional variants.

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

The course objective is to show students which measures is necessary to take for realisation of physical intention in a real machine and how is the construction of a given machine influenced by changes of conditions (type of medium, demanded power, pressure, temperature etc.) On the other side, students will learn how selected construction variant determines attributes and characteristics of a machine.

Specification of controlled education, way of implementation and compensation for absences

Attendance at seminars is required. Compensation of missed lessons to be negotiated with a teacher.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Kadrnožka, J.: Tepelné turbíny a turbokompresory I, CERM, Brno 2004

Recommended reading

MELICHAR, Jan, BLÁHA, Jaroslav, BRADA, Karel. Hydraulické stroje–Konstrukce a provoz, 2002. 1. vydání. Praha: České vysoké učení technické v Praze, ISBN 80–01–02657–4.

Classification of course in study plans

  • Programme N2301-2 Master's

    branch M-FLI , 1 year of study, winter semester, compulsory
    branch M-ENI , 1 year of study, winter semester, compulsory
    branch M-TEP , 1 year of study, winter semester, compulsory
    branch M-FLI , 1 year of study, winter semester, compulsory
    branch M-ENI , 1 year of study, winter semester, compulsory
    branch M-TEP , 1 year of study, winter semester, compulsory

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

1-2. Basic principles and characteristic of blade machines (BM), kinematics and basic equations, resemblances of BM.
3-4. Basics of inner aerodynamics and hydromechanics, energetic losses.
5. Stage of axial BM, turbine, compressor, ventilator.
6. Stage of radial and radio-axial BM, characteristic usage.
7-8. Steam turbine stages and multistage turbines.
9. Gas turbines: compressor, turbine, combustion chamber, cooling of exposed parts.
10. Radial and axial compressor and ventilators.
11. Water turbines.
12. Hydrodynamic pumps.
13. Ventilators and turbochargers, branches of LS.

Exercise

13 hod., compulsory

Teacher / Lecturer

Syllabus

1. Examples of blade machines, sections, pictures, manufacturing problems, usage. Application of Euler equation, Žukovsky equation, circumferential work, circumferential power.
2. Pressure drops in different screen types. Forces on blade screen profile. Calculations of efficiency and losses in blade screens.
3. Blade shape determination according to the assigned values of similarity criteria.
4. Determination of main dimensions for stage of axial steam turbine. Determination of main dimensions for stage of radio-axial turbine.
5. Basic design values for water turbines, basic dimensions calculation.
6. Basic design values of pump for a) high flow rate and small specific energy, b) low flow rate and high specific energy.
7. Ventilator design for a) high compression and high flow rate, b) high compression and low flow rate.

E-learning texts

ŠKORPÍK, Jiří, 2024, Informace k předmětu Lopatkové stroje (LLS)
informace-k-predmetu-lopatkove-stroje.pdf 0.42 MB