Course detail

Probability and statistics

FAST-GA03Acad. year: 2011/2012

Random experiment, continuous and discrete random variable (vector), probability function, density function, probability, cumulative distribution, marginal distribution, independent random variables, transformation of random variables, characteristics of random variables and vectors, special distributions.
Random sampling, statistic, point estimate of distribution parameter, desirable properties of an estimator, confidence interval for distribution parameter, fundamentals for testing hypotheses, tests of hypotheses for distribution parameters, goodness-of-fit test.

Language of instruction

Czech

Number of ECTS credits

3

Mode of study

Not applicable.

Department

Institute of Mathematics and Descriptive Geometry (MAT)

Learning outcomes of the course unit

Student will be able to solve simple practical probability problems and to use basic statistical methods from the fields of interval estimates,and testing parametric and non-parametric statistical hypotheses.

Prerequisites

Basics of the theory of one- and more-functions (derivative, partial derivative, limit and continuos functions, graphs of functions). Calculation of indefinite integrals, knowledge of their basic applications.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Not applicable.

Assesment methods and criteria linked to learning outcomes

Requirements for successful completion of the subject are specified by guarantor’s regulation updated for every academic year.

Course curriculum

1. Continuous and discrete random variable (vector), probability function, density function. Probability.
2. Properties of probabilty. Cumulative distribution and its properties.
3. Relationships between probabilty, density and cumulative distributions. Marginal distribution.
4. Independent random variables. Charakteristics of random variable: mean and variance,percentiles. Rules of calculation mean and variance.
5. Charakteristics of random vectors: covariance, correlation coefficient. Normal distribution - definition, using.
6. Chi-squared distribution, Student´s distribution. Random sampling, statistic.
7. Point estimate of distribution parameter, desirable properties of an estimator.
8. Confidence interval for distribution parameter.
9. Fundamentals for testing hypotheses. Tests of hypotheses for normal distribution parameters.
10. Goodness-of-fit test.
_____________________
Practice:
1. Empirical probability and density distributions. Histigram. Probability and density distributions.
2. Probability. Cumulative distribution.
3. Relationships between probabilty, density and cumulative distributions.
4. Function of random variable.
5. Calculation of mean, variance and percentiles of random variable. Calculation rules of mean and variance.
6. Correlation coefficient. Calculation of probability in some cases of discrete probability distributions - alternative, binomial, Poisson.
7. Calculation of probability in case of normal distribution. Work with statistical tables. Calculation of point estimators.
8. Confidence interval for normal distribution parametres.
9. Tests of hypotheses for normal distribution parametres.
10. Goodness-of-fit test.

Work placements

Not applicable.

Aims

After the course, the students should undertand the basics of the theory of probability, work with distribution functions, know the meanig and methods of calculation of basic numeric characteristics of random variables and vectors, know how a normal random variable is defined and what is its principal meaning, know how to calculate the probability in special cases of discrete and continuous diostribution laws, know how to determine the distribution of a transformed random variable.
They should be able to interpret the basic concepts of the mathematical statistics - sampling, point estimates of distribution parameters and the reqiured properties of an estimate. They should know what an interval estimate of a distribution parameter is and be able to calculate such inerval estimates of the parameters of a normal random variable. They should know the basics of the testing of statistical hypotheses, know how to test hypotheses on the parameters of a normal random variable and on the shape of a distribution law.

Specification of controlled education, way of implementation and compensation for absences

Extent and forms are specified by guarantor’s regulation updated for every academic year.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

KOUTKOVÁ, H., DLOUHÝ, O. Sbírka příkladů z pravděpodobnosti a matematické statistiky. Brno: CERM,2011, 63 s. ISBN 978-80-7204-740-6. (CS)
KOUTKOVÁ, H. Základy teorie odhadu .Brno: CERM, 2007,  51 s. ISBN 978-80-7204-527-3.   (CS)
KOUTKOVÁ, H. Základy testování hypotéz. Brno: CERM, 2007, 52 s. ISBN 978-80-7204-528-0. (CS)
KOUTKOVÁ, H., MOLL, I. Základy pravděpodobnosti. Brno: CERM, 2011, 127 s. ISBN 978-80-7204-738-3. (CS)
KOUTKOVÁ, H.  M03 Základy teorie odhadu a M04 Základy testování hypotéz. FAST VUT, Brno, 2004. [https://intranet.fce.vutbr.cz/pedagog/predmety/opory.asp] (CS)

Recommended reading

ANDĚL, J. Statistické metody. Praha: MatFyzPress, 2007, 299 s. ISBN 80-7378-003-8.  (CS)
WALPOLE, R.E., MYERS, R.H. Probability and Statistics for Engineers and Scientists. New York: Macmillan Publishing Company, 1990, 823 p. ISBN 0-02-946910-4. (EN)

Classification of course in study plans

  • Programme B-K-C-GK Bachelor's

    branch G , 1 year of study, summer semester, compulsory

  • Programme B-P-C-GK Bachelor's

    branch G , 1 year of study, summer semester, compulsory

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Exercise

26 hod., compulsory

Teacher / Lecturer