Course detail

Structural Analysis II

FAST-BD04Acad. year: 2011/2012

The principles of the slope and deflection method and its variants. The computation model and the number of degrees of freedom. The slope and deflection method for the planar structures. The analysis of a straight bar with changing cross-section. Local quantities, the primary vector and the stiffness matrix. Hinged bar, cantilever. A bar with the constant cross-section. Geometrical transformation, the global stiffness matrix. The analysis of a bar system, the assembling of the equations, the localization process. Calculation of the end forces of a bar and the diagrams of the internal forces. The solution of the reactions and the check of the equilibrium. Another version of the assembling of the system of equations.
Analysis of the rectangular frames and continuous girders. A bar with haunches. Temperature effects, shifts of the supports. A truss girder solved by the slope and deflection method. Utilisation of the symmetry. Elastically connected bar. The combinations of the loading cases, the extremes. The stability of the plane frames.
The analysis of the spatial frames by the slope and deflection method. Information on software products.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Department

Institute of Structural Mechanics (STM)

Learning outcomes of the course unit

The student will learn the structural analysis of the statically indeterminate planar bar systems by the stiffness method, namely plane frames and plane trusses, including the temperature effects and shifts of the supports.

Prerequisites

Structural analysis of axial forces in statically determinate trusses, simple built-in beam, plane frame, cable polynom and catenary.
Loading of structures, influence of mobile load. Influence lines of static quantities exerted on a beam.
Explanation the principle of virtual work and theorem of reciprocity of virtual work. The enumeration of the translations and rotations of the straight and broken girders by the method of unit forces.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Not applicable.

Assesment methods and criteria linked to learning outcomes

Requirements for successful completion of the subject are specified by guarantor’s regulation updated for every academic year.

Course curriculum

1.The principles of the slope and deflection method, its origin and its development, the variants of this method. Calculation model and the number of degrees of freedom.
2.Static conditions of the equilibrium, the parameters of the deflection, constrained nodes. The matrix formulation of the slope and deflection method.
3.The analysis of a straight bar with changing cross-section. Variously ending bars. Local quantities, the primary vector and the stiffness matrix. The modelling of a cantilever.
4.A bar with a constant cross-section, fundamental deflection coefficients. The assembling of the primary vector based upon the end moments of a bar.
5.The geometrical transformation into the global coordinate system, the global matrix of a bar. The transformation at the rectangular frames.
6.The analysis of a bar system, the assemblage of the system of equations, the code number and the localization.
7.The analysis of bars – the calculation of components of the internal forces, the diagrams of the normal, shearing forces and the bending moments.
8.The solution of the reactions, the check of the equilibrium –in the nodes and for the whole structure. Errors produced in the solution of the frames by the slope and deflection method.
9.Another version of the assemblage of the system of equations. Some particularities in the analysis of the rectangular frames and continuous girders. The analysis of the spatial frames by the slope and deflection method.
10.Bars with haunts, various possibilities in the analysis of the horizontal line haunts. Temperature changes, shifts of the supports.
11.A truss girder solved by the slope and deflection method. Utilisation of the symmetry. Elastically connected bar.
12.The combinations of the loading cases, the extremes. The stability of the plane frames.
13.Information about software products. Other problems and methods of the structural mechanics.

Work placements

Not applicable.

Aims

Introduction to the stiffness Method for analysis of the statically indeterminate of planar bar systems. Simplification to the stiffness method and deflection method for analysis of planar bar systems, plane trusses. Influence of the beam haunch.

Specification of controlled education, way of implementation and compensation for absences

Extent and forms are specified by guarantor’s regulation updated for every academic year.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Antony Bedford, Wallace L. Fowler: Statics - Engineering Mechanics. Addison-Wesley Publishing Company, Inc., 1995. (EN)
KADLČÁK, J. - KYTÝR, J.: Statika stavebních konstrukcí I. VUTIUM Brno, 2010. ISBN 80-214-1204-6. (CS)
KADLČÁK, Jaroslav a KYTÝR, Jiří: Statika stavebních konstrukcí II. Brno: VUTIUM, 2009. ISBN 978-80-214-3428-8. (CS)
Zdeněk Bittnar, Jiří Šejnoha: Numerical Methods in Structural Mechanics. Asce Press, Thomas Telford, 1996. (EN)

Recommended reading

Sobota, J.: Statika stavebných konštrukcií 2. ALFA Bratislava, 1991. (SK)

Classification of course in study plans

  • Programme B-K-C-SI Bachelor's

    branch K , 3 year of study, winter semester, compulsory
    branch S , 3 year of study, winter semester, compulsory

  • Programme B-P-C-SI Bachelor's

    branch K , 3 year of study, winter semester, compulsory
    branch S , 3 year of study, winter semester, compulsory

  • Programme B-P-E-SI Bachelor's

    branch K , 3 year of study, winter semester, compulsory
    branch S , 3 year of study, winter semester, compulsory

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Exercise

26 hod., compulsory

Teacher / Lecturer