Course detail

Descriptive geometry

FAST-AA02Acad. year: 2011/2012

Orthogonal axonometry, skew axonometry, skew projection. Linear perspective, photogrammetry. Helix, developable helicoidal surface, right closed rule helicoidal surface. Surfaces of revolution . Warped surfaces. Lighting. Teoretical designs of roofs. Introduction to topopgraphic surfaces.

Language of instruction

Czech

Number of ECTS credits

4

Mode of study

Not applicable.

Department

Institute of Mathematics and Descriptive Geometry (MAT)

Learning outcomes of the course unit

After the course the students should understand and know how to use the basics of orthogonal axonometry, skew projection, and linear perspective.Helix, developable helicoidal surface, right closed rule helicoidal surface. Surfaces of revolution . Warped surfaces. Lighting. Teoretical designs of roofs. Introduction to topopgraphic surfaces.

Prerequisites

Construction of conics using their focal properties.Perspective collineation, perspectoive affinity, affine image of a circle. Monge projection.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Not applicable.

Assesment methods and criteria linked to learning outcomes

Requirements for successful completion of the subject are specified by guarantor’s regulation updated for every academic year.

Course curriculum

Lectures
1. Basics of lihting. Technical lighting.
2. Rotation symmetric surfaces, sections of rotation-symmetric surfaces.
3. Lighting of surfaces of revolution .
4. Axonometry – basics.
5. Orthogonal axonometry.
6. Skew axonometry, skew projection.
7. Linear perspective.
8. Linear perspective.
9. Basics of photogrammetry. Reconstruction from a vertical picture.
10. Warped quadrics. Hyperbolic paraboloid. One-sheet hyperboloid.
11. Higher order warped surfaces.Theoretical designe of roofs.
12. Helix, developable helicoidal surface, helicoidal conoid.
13. Topografic surfaces.
Seminars
1. Revision – Monge projection.
2. Technical lighting.
3. Tangent plane of a rotation-symmeric surface, section of a rotation-symmetric surface.
4. Lighting a rotation-symmetric surface.
5. Orthogonal axonometry. Metric problems in coordinate planes.
6. Orthogonal axonometry. Projections of simple bodies and surfaces, their sections and intersections with a straight line.
7. Projecting in skew projection. Projection of a circle in a coordinate plane. Displaying simple bodies and surfaces, their sections and intersections ith a straight line.
8. Linear perspective. Intersection method. Constructing a free perspective.
9. Linear perspective. Method of rotated ground plan. Other methods of projecting a perspective.
10. Linear perspective. Vertical picture. Reconstructing an object from a perpendicular picture.
11. Warped hyperboloid, construction. Hyperbolic paraboloid. Roofing by hyperbolic paraboloid.
12. Higher-order warped surfaces. Theoretic design of roofs.
13. Constructing a helix. Right helicoidal conoid.

Work placements

Not applicable.

Aims

After the course the students should understand and know how to use the basics of orthogonal axonometry, skew projection, and linear perspective.

Specification of controlled education, way of implementation and compensation for absences

Extent and forms are specified by guarantor’s regulation updated for every academic year.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

BULANTOVÁ,J.,HON,P.,PRUDILOVÁ,K.,PUCHÝŘOVÁ,J.,ROUŠAR,J.,ROUŠAROVÁ,V.,SLABĚŇÁKOVÁ,J.,ŠAFAŘÍK,J.: Deskriptivní geometrie, multimediální CD. FAST VUT v Brně, 2004. (CS)
Piska, R., Medek, V.: Deskriptivní geometrie I.. SNTL Praha, Alfa Bratislava, 1975. (CS)
Piska, R., Medek, V.: Deskriptivní geometrie II.. SNTL Praha, Alfa Bratislava, 1975. (CS)

Recommended reading

Holáň, S., Holáňová, L.: Cvičení z deskriptivní geometrie II., III.. VUT Brno, 1994. (CS)
Puchýřová, J., Bulantová, J., Prudilová,K., Zrůstová,L.: Úlohy o přímkových plochách (ke stažení na webové stánce Ústavu matematiky FAST VUT v Brně). 2006. (CS)
Puchýřová, J., Bulantová, J., Prudilová,K., Zrůstová,L.: Úlohy v kosoúhlém promítání (ke stažení na webové stánce Ústavu matematiky FAST VUT v Brně). 2006. (CS)
Šafařík, J.: Technické osvětlení (ke stažení na webové stánce Ústavu matematiky FAST VUT v Brně). 2006. (CS)
Šafářová, H.: Teoretické řešení střech (ke stažení na webové stánce Ústavu matematiky FAST VUT v Brně). 2006. (CS)
Vala, J.: Deskriptivní geometrie I., II.. VUT Brno, 1997. (CS)

Classification of course in study plans

  • Programme B-P-C-APS Bachelor's

    branch APS , 1 year of study, winter semester, compulsory

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Exercise

26 hod., compulsory

Teacher / Lecturer