Course detail

Theoretical fundamentals of silicates technology

FAST-DJ62Acad. year: 2011/2012

Concise principles of thermodynamics, the first and second law of thermodynamics, heat of formation, chemical equilibrium, Guldberg-Waag law, system out-of-equilibrium, reaction isotherm, State behaviour of liquids, skin effects, cohesive pressure, transport phenomena in liquids, Phase equilibria, one component system, Gibbs law, two components system. Heterogeneous one-, two-, and more components system, solubility of gases in liquids. Solid phase-gas system, solid phase - liquid phase, ternary systems. Electrochemistry, Faraday’s laws, molar conductivity of weak and strong electrolytes, Wheatstone bridge, dissociation and hydrolysis, ionic product of water, galvanic cells. Disperse systems, classification, basic physical properties, coagulation, zeta potential. Reaction kinetics, order and molecularity of reaction, reactions of 1st, 2nd and higher orders, catalysts. The structure of silicates, Pauling’s principles, basic structural arrangement. Clay minerals, structural arrangement, classification, water bound in clay minerals. Structure and properties of silicate melts, crystallization of melts, glass structures. Heterogeneous equilibria in silicate systems, solid state reactions.

Language of instruction

Czech

Number of ECTS credits

8

Mode of study

Not applicable.

Department

Institute of Technology of Building Materials and Components (THD)

Learning outcomes of the course unit

Not applicable.

Prerequisites

Physics and Chemistry of Building Materials, theoretical fundamentals of building materials structure in the extent common for students at the Faculty of Civil Engineering (FAST), Geology, Mineralogy, Dressing – demanded at least minimum orientation.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Not applicable.

Assesment methods and criteria linked to learning outcomes

Requirements for successful completion of the subject are specified by guarantor’s regulation updated for every academic year.

Course curriculum

1.Chemical equilibria, the Guldberg-Waag Law, systems outside of equilibrium, reaction isotherm.
2.State behaviour of liquids, surface effects, cohesion pressure, transport processes in liquids.
3.Phase equilibria, one component system, Gibbs Law of phases, system with two components.
4.Heterogeneous one-, two- and more-components systems, solubility of gases in liquids.
5.The systems: solid phase-gas, solid phase-liquid phase, ternary systems.
6.Electrochemistry, Faradays Laws, molar conductivity of weak and strong electrolytes, the Wheatstone´s bridge, dissociation and hydrolysis, ionic product of water, galvanic elements.
7.Disperse systems, division, basic physical properties, coagulation, zeta-potential.
8.Reaction kinetics, order and molecularity of reaction, reactions of 1st, 2nd, and higher orders, catalysts.
9.Structure of silicates, Pauling´s principles, basic structural arrangement.
10.Clay minerals, structural arrangement.
11.Classification of clay minerals, water bond in clay minerals.
12.Structure and the properties of silicate melt.
13.Melt crystallisation, the structure of glass.Heterogeneous equilibria in silicate systems, reactions in solid state.

Work placements

Not applicable.

Aims

Brief fundamentals of general physical chemistry in the area of atomistic, electrochemistry, state of matter, reaction kinetics, processes on boundaries between phases, sorption processes and basic phenomena of disperse systems. Fundamentals of physical chemistry concerning the structure of silicates, theory of melts and glasses, theory of solid state reactions.

Specification of controlled education, way of implementation and compensation for absences

Extent and forms are specified by guarantor’s regulation updated for every academic year.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Not applicable.

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme D-P-C-SI (N) Doctoral

    branch FMI , 1 year of study, winter semester, elective

  • Programme D-K-C-SI (N) Doctoral

    branch FMI , 1 year of study, winter semester, elective

Type of course unit

 

Lecture

39 hod., optionally

Teacher / Lecturer