Course detail

Vacuum Physics and Technology

FSI-TTVAcad. year: 2012/2013

The course is devoted to physical processes taking place in vacuum, vacuum measurements, techniques for obtaining vacuum, materials suitable for construction of vacuum systems, and basic components of vacuum systems.

Language of instruction

Czech

Number of ECTS credits

3

Mode of study

Not applicable.

Learning outcomes of the course unit

Students acquire abilities to calculate and design simple vacuum apparatus (pump velocity, degassing of chamber walls, selection of materials and seals). Students are also able to localize vacuum leaks by various methods.

Prerequisites

Knowledge of Newtonian mechanics on the level defined by the textbook HALLIDAY, D. - RESNICK, R. - WALKER, J. Fundamentals of Physics. J. Wiley and Sons. Working knowledge of differential, and integral calculus is expected.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations.

Assesment methods and criteria linked to learning outcomes

The exam is divided into written- and oral part.

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

The aim is to facilitate students in basic view on vacuum physics to be able to design simple vacuum systems and to operate simple technologic apparatuses using various levels of vacuum for fabrication of thin films.

Specification of controlled education, way of implementation and compensation for absences

The presence at the practices is obligatory. Absence compensation is laid down by the teacher according to the range of the absented matter.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Groszkowski, J.: Fyzika a technika vakua
Roth, A.: Vacum Technology
Weissler, G. L. - Carlsson, R. W.: Vacuum Physics and Technology

Recommended reading

Lukáč, P.: Netesnosti vákuových systémov
Lukáč, P.: Sbierka príkladov z vákuovej fyziky
Pátý, L.: Fyzika nízkých tlaků

Classification of course in study plans

  • Programme B3901-3 Bachelor's

    branch B-FIN , 3 year of study, winter semester, compulsory

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

Vacuum. Vacuum definition and classification. History of vacuum techniques. Importance of vacuum technology and applications of vacuum techniques. Books on vacuum technology.
Maxwell distribution of the velocities. Pressure of gas. Mean free path. Law´s of kinetic theory of ideal gases.
Physical processes in vacuum systems.
Effusion, diffusion, transfer of heat and momentum. Flow of gases. Adsorption and desorption. Solubility and permeation of the gases. Evaporation and condensation.
Ionization of the gases. Interactions of electrons and ions with solid surfaces.
Vacuum production. Pumping speed. Pumping of a vacuum system. Rotary and sorption pumps. Diffusion pumps. Turbomolecular pumps. Ion pumps. Cryogenic pumps.
Measurement of low pressures. McLeod gauge, membrane gauges, Pirani gauge, Penning gauges and others ionization gauges.
Quadrupole spectrometer.
High vacuum technology. Components of vacuum apparatus. Materials useful ranges for vacuum. Vacuum valves. Flange fittings. Electrical vacuum feedthroughs. Motion transmission into the vacuum chamber. Vacuum apparatuses. Design of the vacuum complex.
Leak detection. Outgasing of the walls. Rules for operating vacuum systems.

Exercise

10 hod., compulsory

Teacher / Lecturer

Syllabus

The tutorial will be in direct link with the course (solving sample problems of the throughput and pumping speed). Excursion to vacuum laboratory of the Institute of Physical Engineering.

Computer-assisted exercise

3 hod., compulsory

Teacher / Lecturer

Syllabus

Computer-aided design vacuum apparatus.