Course detail

Modeling and Simulation

FEKT-KMODAcad. year: 2012/2013

Model, modeling, simulation, emulation. Models of dynamical systems. Numerical methods for solution of continuous-time dynamical systems. Lagrange equations for modeling of dynamical systems. Bond graphs. MATLAB-Simulink as a tool of control engineer. Discrete events systems.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Learning outcomes of the course unit

The student acquires knowledge how to build abstract models of dynamical systems from various physical areas in a systematic way. The student acquires skill in simulation and analysis of such models by help of MATLAB-Simulik software package.

Prerequisites

The subject knowledge on the secondary school level is required.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations.

Assesment methods and criteria linked to learning outcomes

Work of students is evaluated during study by tests in exercises and one control test. They can obtain maximum 30 points by these tests during semester.
Final examination is evaluated by 70 points at maximum.

Course curriculum

1. Basic concepts. Relation between abstract and real system.
2. State space description of systems
3. Relation between state space model and I/O models
4. Matlab - Simulink, numerical solution of differential equations
5. Models of simple mechanical systems.
6. Models of simple mechanical systems. Free bodies method.
7. Modeling of mechanical systems with help of Lagrange equations.
8. Models of simple electrical, thermal and hydraulic systems.
9. Bond graphs, basic concepts.
10. Modeling of electrical systems with help of bond graphs
11. Modeling of mechanical systems with help of bond graphs
12. Discrete events systems modeling
13. Discrete events systems simulation

Work placements

Not applicable.

Aims

To develop the students understanding of abstract models of real systems. To introduce methods of simulation of dynamical systems.

Specification of controlled education, way of implementation and compensation for absences

The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Horáček, P.:Systémy a modely, ČVUT Praha, 1998. (CS)
MATLAB-Simulink Reference manual. (EN)
Noskievič, P.:Modelování a identifikace, Montanex a.s.,1999. (CS)
Šolc, F., Václavek, P.: Modelování a simulace, ET VUT FEKT Brno (CS)

Recommended reading

Gordon G.:System Simulation,Prentice Hall,1969 (EN)
Karnopp D.C., Margolis D.L., Rosenberg R.C.:System Dynamics a Unified Approach. J. Wiley,1990. (EN)

Classification of course in study plans

  • Programme EECC Bc. Bachelor's

    branch BK-AMT , 2 year of study, summer semester, compulsory

  • Programme EEKR-CZV lifelong learning

    branch EE-FLE , 1 year of study, summer semester, compulsory

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

Basic concepts. Relation between abstract and real system. Kinds of models.
Models of simple mechanical systems. Free bodies method.
Models of simple electrical, thermal and hydraulic systems. Mass conservation.
Numerical solution of differential equations. Basic methods.
Modeling of systems with help of Lagrange equations.
Bond graphs, basic concepts.
Bond graphs, augmentation.
Bond graphs and state variables equations.
Algebraic loops and non-minimal realization in bond graphs.
Numerical methods used in MATLAB

Fundamentals seminar

13 hod., compulsory

Teacher / Lecturer

Syllabus

Construction of model of a simple mechanical system.
Construction of model of a simple electrical system.
Construction of model of electromechanical system.
Construction of model of thermal and hydraulic system.
Usage of Lagrange equations.
Bond graphs, basic construction.
Construction of bond graph of an electrical RLC circuit.
Construction of bond graph of a complicated electrical circuit.
Construction of bond graph of a mechanical system.
Construction of bond graph of an electromechanical system.
Complete solution, bond graph and state variables equations of complicated electromechanical system.
Example of algebraic loop and non-minimal realization.
Discrete events system model

Exercise in computer lab

7 hod., compulsory

Teacher / Lecturer

Syllabus

MATLAB-Simulink, basic information.
Construction of a model and its simulation in MATLAB-Simulink.
Special functions in MATLAB-Simulink
Special functions in MATLAB-Simulink
Special functions in MATLAB-Simulink