Course detail

Robotics

FEKT-MRBTAcad. year: 2012/2013

1. Robotics - introduction.
2. Robot sensors.
3.Selflocalisation in mobile robotics - GNSS (GPS, Glonass, Galileo).
4. Environment maps - Robot Evidence Grids /occupancy grids including data fusion), 8tree.
7. Human-robot cooperation, telepresence.
8. Mobile robot cooperation, robot competitions.
9. Non-traditional actuators.
10. Mobile robot - structure, basic parts.
11. Industrial manipulators - main parts, kinematic configurations.
12. Manipulators - kinematics, inverse kinematics, singularities.
13. Manipulators - dynamics, trajectory planning, cartesian coordinates, joint coordinates. Practical demonstrations.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Learning outcomes of the course unit

The students acquire knowledge of current state and trends in robotics. Also, they acquire practical knowledge from construction and use of robots.

Prerequisites

The subject knowledge on the Bachelor´s degree level is requested.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations.

Assesment methods and criteria linked to learning outcomes

Requirements for completion of a course are specified by a regulation issued by the lecturer responsible for the course and updated for every year.

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

To inform students about current state and future of robotics. Also, to inform students about peculiarities of robotic systems and prepare them for introduction of robotic systems to industry.

Specification of controlled education, way of implementation and compensation for absences

The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Laumond J.P.: Planning Robot Motion. Springer, 1997. (EN)
Spong, M.-Vydyasagar, M.: Robot Dynamics and Control. J. Willey,1989. (EN)

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme EEKR-M Master's

    branch M-KAM , 1 year of study, summer semester, elective specialised

  • Programme EEKR-M Master's

    branch M-KAM , 1 year of study, summer semester, elective specialised

  • Programme EEKR-CZV lifelong learning

    branch EE-FLE , 1 year of study, summer semester, elective specialised

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

History of robotics. Future trends. Basic components of industrial robots. Applications of robots, hobby robotics.
How to build a robot. Instructions for project.
Kinematics of robots.
Inverse kinematics.
Path planning of industrial robots..
Dynamics of industrial robots.
Modelling and control of industrial robots.
Mobile robots. Survey of the most known projects.
Kinematics of wheeled robots.
Analysis, modelling and control of a wheeled robot.
Sensoric subsystem of mobile robots.
Self localization and navigation of mobile robot.
Path planning for mobile robots.

Laboratory exercise

26 hod., compulsory

Teacher / Lecturer

Syllabus

Excursion to industry with robots.
Modelling and simulation of an industrial robot.
Programming and control of an industrial robot.