Course detail

Structure and Properties of Materials

FEKT-NSVMAcad. year: 2012/2013

Composition, structure and properties of materials. Regulation of materials properties. Glass and ceramic for electronics, glass cements. Glass crystalline materials. Ceramic superconductors. Piezoelectrics. Elemental, compound and amorphous semiconductors, semiconductors films. Organic semiconductors. Magnetic metal glass. Materials for magnetic recording. Materials for optoelectronics. Fibre optics. Storage materials. Biomaterials and biocompatibility. High-purity materials. Composites. Conducting plastics. High-vacuum materials.

Language of instruction

English

Number of ECTS credits

6

Mode of study

Not applicable.

Learning outcomes of the course unit

The student gains improved and detailed knowledge of materials for electrical, electronic and microelectronic manufacturing and for application in related branches. The knowledge of the correlation: composition-structure-properties enables optimization of materials selection for design of technical constructions and devices, with respect to possible changes of working environment.

Prerequisites

The subject knowledge on the Bachelor´s degree level is requested.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations.

Assesment methods and criteria linked to learning outcomes

Requirements for accreditation:
Performance of all laboratory measurements and passing their reports. Min. 80% participation in theoretical (numerical) exercises.
Final test.

Course curriculum

Composition, structure and properties of materials. Approaches to regulation of materials properties.
Non-traditional and heat-resistant plastics. Conducting composites.
Glass for electronics. Glass cements. Sintered glasses. Glass crystalline materials.
Ceramic for electronics. Ceramic superconductors. Piezoelectrics.
Elemental, compound semiconductors.
Amorphous semiconductors. Organic semiconductors. Semiconducting films.
Magnetic metal glasses. Materials for magnetic recording.
Materials for optoelectronics. Fibre optics.
High-purity materials for electronic and other purposes.
High-vacuum materials.
Materials for conversion of energy. Storage materials.
Bio-materials and bio-compatibility.
Materials and working environment.

Work placements

Not applicable.

Aims

The aim of the course is to acquaint students with the mutual relation of composition and structure of materials on their properties and approaches to regulation of materials properties. The knowledge of these relation enables to design optimal sorts of materials for electrical, electronic and microelectronic manufacturing and applications in related technical and scientific branches.

Specification of controlled education, way of implementation and compensation for absences

Obligatory participation in teaching.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Askeland, D. R.: The Science and Engineering of Materials. Boston 1994, USA, ISBN 0-534-93423-4 (EN)
Hummel, R.,F.: Electronic Properties of Materials. Springer Verlag New York 2000, USA, ISBN 0-387-95144-X (EN)

Recommended reading

Kazelle, J., Liedermann, K., Jirák, J., Havlíček, Vaněk, J.: Elektrotechnické materiály a výrobní procesy. Elektronické texty, Brno 2002. (CS)
Šesták, J. a ost.: Speciální technologie a materiály, ACADEMIA Praha 1993 (CS)

Classification of course in study plans

  • Programme EECC-MN Master's

    branch MN-EVM , 1 year of study, winter semester, compulsory
    branch MN-MEL , 1 year of study, winter semester, elective specialised

Type of course unit

 

Lecture

39 hod., compulsory

Teacher / Lecturer

Syllabus

Composition, structure and properties of materials. Approaches to regulation of materials properties.
Non-traditional and heat-resistant plastics. Conducting composites.
Glass for electronics. Glass cements. Sintered glasses. Glass crystalline materials.
Ceramic for electronics. Ceramic superconductors. Piezoelectrics.
Elemental, compound semiconductors.
Amorphous semiconductors. Organic semiconductors. Semiconducting films.
Magnetic metal glasses. Materials for magnetic recording.
Materials for optoelectronics. Fibre optics.
High-purity materials for electronic and other purposes.
High-vacuum materials.
Materials for conversion of energy. Storage materials.
Bio-materials and bio-compatibility.
Materials and working environment.

Fundamentals seminar

12 hod., compulsory

Teacher / Lecturer

Syllabus

Solving problems in:
Composition and structure of organic and inorganic materials.
Properties of dielectrics, semiconductors and magnetic materials in electric, magnetic and thermic fields.
Piezoelectric properties of matter.
Optical properties of matter.
Compatibility of inorganic, organic and biological materials.

Laboratory exercise

14 hod., compulsory

Teacher / Lecturer

Syllabus

1) Properties of semiconductors in magnetic and thermic fields.
2) Electrical properties of dielectric and conducting composites.
3) Dielectric properties of ferroelectrics.
4) Properties of piezoelectric elements.
5) Temperature and frequency dependance of magnetic properties in ferro- and ferrimagnetics.
6) Losses of energy in dielectric and magnetic materials.