Course detail

Artificial Intelligence Algorithms

FSI-VAI-KAcad. year: 2012/2013

The course introduces basic approaches to artificial intelligence algorithms and classical methods used in the field. Main emphasis is given to automated formulas proves, knowledge representation and problem solving. Practical use of the methods is demonstrated on solving simple engineering problems.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Learning outcomes of the course unit

Understanding of basic methods of artificial intelligence and ability of their implementation.

Prerequisites

The knowledge of basic relations of the graphs theory and object oriented technologies is expected.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations.

Assesment methods and criteria linked to learning outcomes

Course-unit credit requirements: submitting a functional software project which uses implementation of selected AI method. Project is specified in the first seminar. Systematic checks and consultations are performed during the semester. Each student has to get through one test and complete all given tasks. Student can obtain 100 marks, 40 marks during seminars (20 for project and 20 for test; he needs at least 20), 60 marks during exam (he needs at least 30).

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

The course objective is to make students familiar with basic resources of artificial intelligence, potential and adequacy of their use in engineering problems solving.

Specification of controlled education, way of implementation and compensation for absences

The attendance at lectures is recommended, at seminars it is obligatory. Education runs according to week schedules. The form of compensation of missed seminars is fully in the competence of a tutor.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Edward A. Bender: Mathematical Methods in Artificial Intelligence
Kim W.Tracy, Peter Bouthoorn: Object-oriented Artificial Intelligence Using C++

Recommended reading

F.Zbořil a kol.: Umělá inteligence (skriptum VUT)

Classification of course in study plans

  • Programme N2301-2 Master's

    branch M-AIŘ , 1 year of study, summer semester, compulsory
    branch M-AIŘ , 1 year of study, summer semester, compulsory

Type of course unit

 

Guided consultation

17 hod., optionally

Teacher / Lecturer

Syllabus

1. Introduction, AI areas.
2. Problems solving: search in state space.
3. Problems solving: decomposition into sub-problems, games playing methods.
4. Formal logic systems, propositional and predicate logic.
5. Generalized resolution method.
6. Predicate logic and Prolog. Non-traditional logics.
7. Knowledge representation: predicate logic formulas and rules.
8. Knowledge representation: semantic networks, frames and scenarios. Declarative and procedural representation.
9. Machine learning.
10. Evolution techniques.
11. Intelligent and reactive agents.
12. Multiagent systems.
13. Other AI areas. Actual state, prospects.