Course detail
Reliability Fundamentals
FSI-EZSAcad. year: 2013/2014
The course is focused on the basic and the most advanced knowledge in reliability. The students are familiarized with the definition of reliability and its incorporation into the quality system of object. The basic terminology of reliability is presented and the management of organization and reliability is described. The modern view on the life product cycle is also discussed. Special attention is devoted to the indicators of reliability, for both unrepaired and repaired objects. Further, selected reliability analyses are submitted. Great emphasis is laid on the principles of maintenance. The reliability tests, information systems and the most important standards and legislation are discussed in this course. The possible qualification in reliability is also presented. The course is supplemented by the exercises in which the selected topics are practiced using the examples from industrial practice. The results and conclusions are also discussed in the exercises. The Reliability 1 and 2 courses in the master study continue this course.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
MYKISKA, A. Bezpečnost a spolehlivost technických systémů. 1. vydání. Praha: České vysoké učení technické v Praze, 2006,206 s. Učební texty ČVUT v Praze. Fakulta strojní. ISBN 80-01-02868-2. (CS)
Recommended reading
HELEBRANT, F. Technická diagnostika a spolehlivost, IV. Provoz a údržba strojů. 1. vydání. VŠB – Technická univerzita Ostrava, 2008. 130 s. ISBN 978-80-248-1690-6. (CS)
NOVÁK,M., ŠEBESTA,V. a VOTRUBA, Z. Bezpečnost a spolehlivost systémů. 1. vydání. Praha: České vysoké učení technické v Praze, 2001, 150 s. Učební texty ČVUT v Praze. Fakulta dopravní. ISBN 80-01-02331-1. (CS)
STAPELBERG, R. Handbook of Reliability, Availability, Maintainability and Safety in Engineering Design. 1. edition. Springer. 851 p. ISBN-13: 978-1848001749. (EN)
SUMMERVILLE, N. Basic Reliability: An Introduction to Reliability Engineering. AuthorHouse, 2004. 136s. ISBN 978-1418424183. (EN)
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2.Basic terminology in reliability
3.Management of organization and reliability, life product cycle
4.Introduction to reliability indicators
5.Basic reliability indicators of unrepaired objects
6.Basic reliability indicators of repaired objects
7.Selected reliability analysis methods: methodological instruction
8.Reliability analysis: failure mode and effect analysis (FMEA), event tree analysis (ETA), fault tree analysis (FTA)
9.Reliability analysis: Markov analysis, failure-free block diagram and Boolean methods
10.Principles of system maintenance
11.Failure-free and maintainability requirements
12.Reliability tests and reliability information systems, description, and discussion
13.Standards, legislation and possible qualification in reliability
Exercise
Teacher / Lecturer
Syllabus
2.Numerical and functional characteristics of reliability
3.Basic reliability indicators of unrepaired objects
4.Basic reliability indicators of repaired objects
5.Reliability analysis: failure mode and effect analysis (FMEA),
6.Reliability analysis: event tree analysis (ETA), fault tree analysis (FTA).
7.Reliability analysis: Markov analysis, failure-free block diagram and Boolean methods
8.Principles of system maintenance
9.Course-unit credit
Computer-assisted exercise
Teacher / Lecturer
Syllabus
2.Basic reliability indicators of unrepaired objects, basic reliability indicators of repaired objects
3.Reliability analysis: failure mode and effect analysis (FMEA), reliability analysis: event tree analysis (ETA), fault tree analysis (FTA), Markov analysis, failure-free block diagram and Boolean methods
4.Principles of system maintenance, reliability tests