Course detail

Control Theory I

FSI-VA1Acad. year: 2013/2014

The first and the second part of the course presents the various principles and techniques used in the analysis and design of linear continuous feedback control systems. Essential principles of automatic control, logical control and PLC systems, linear controllers, control loops, transient response, frequency analysis, stability of systems, controller design.
The third part of the course presents multiple – loop control systems and the fourth part contains multivariable control systems. The principles of digital control, sampling process, Z-transform, difference equations, frequency response methods, stability of digital systems are in the fifth part of the course. The last part containts the foundations of robust control of digital systems.

Language of instruction

Czech

Number of ECTS credits

6

Mode of study

Not applicable.

Learning outcomes of the course unit

Analysis and design of linear continuous-time and discrete feedback control systems. Students will obtain the basic knowledge of automation, description and classification of control systems, determination of their characteristics. Students will be able to solve problems of stability of control systems.

Prerequisites

The knowledge of essential principles and terms of automation, the knowledge of mathematics gained within the bachelor's study programme, using of Matlab.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

The course is taught through lectures explaining the basic principles and theory of the discipline. Exercises are focused on practical topics presented in lectures.

Assesment methods and criteria linked to learning outcomes

In order to be awarded the course-unit credit students must prove 100% active participation in laboratory exercises and elaborate a paper on the presented themes. The exam is written and oral. In the written part a student compiles two main themes which were presented during the lectures and solves three examples. The oral part of the exam will contain discussion of tasks and possible supplementary questions.

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

The aim of the course is to formulate and establish basic conceptions of automatic control, computational models, theories and algorithms of control systems.

Specification of controlled education, way of implementation and compensation for absences

Attendance and activity at the seminars are required. One absence can be compensated for by attending a seminar with another group in the same week, or by the elaboration of substitute tasks. Longer absence can be compensated for by the elaboration of compensatory tasks assigned by the tutor.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Ogata,K.: Modern Control Engineering, Prentice Hall , fourth edition, New Jersey 2002, ISBN 0-13-043245-8 (EN)
Schwarzenbach,J.-Gill,F.K.: System Modelling and Control, Butterwoth Heinemann, third edition, Oxford 2002, ISBN 0-340-54379-5 (EN)
Franklin, G.F., Powell, J.D. and Emami-Naeini, A.: Feedback Control of Dynamic Systems. Prentice-Hall, New Jersey, 2009. (EN)
Stefani, R.T., Shanian, B., Savant, C.L. and Hostetter, G.H.: Design of Feedback Control Systems. Oxford University Press, 2002. (EN)

Recommended literature

Švarc, I., Matoušek, R., Šeda, M., Vítečková, M.: Automatizace-Automatické řízení, skriptum VUT FSI v Brně, CERM 2011. (CS)
Švarc, I.: Teorie automatického řízení, podpory FSI, www stránky fakulty 2003. (CS)
Bernard Friedland: Control System Design: An Introduction to State-Space Methods. Dover Publications, 2005. (EN)
Morris, K.: Introduction to Feedback Control. Academic Press, London, 2002. (EN)

Classification of course in study plans

  • Programme N2301-2 Master's

    branch M-AIŘ , 1 year of study, winter semester, compulsory
    branch M-AIŘ , 1 year of study, winter semester, compulsory

Type of course unit

 

Lecture

39 hod., optionally

Teacher / Lecturer

Syllabus

1. Continuous linear control
2. Discrete control
3. Determination of a system model, basic of identification
4. Typical dynamic elements of regulation circuits, regulation accuracy
5. Multiple regulation circuits, transport delay
6. Advanced methods of synthesis of regulation circuit
7. Quality of regulation, synthesis of regulation circuit by selected quality
8. Discrete systems, selection of sampling period
9. Discretisation of continuous system
10.Advanced methods of synthesis of discrete regulation circuit
11.General linear controller
12.Introduction to multidimensional regulation circuits
13.Analysis and synthesis of multidimensional regulation circuits

Computer-assisted exercise

26 hod., compulsory

Teacher / Lecturer

Syllabus

1. Review of solving of continuous control examples (M-script, Control toolbox/toolkit)
2. Review of solving of discrete control examples
3. Identification of system from measured data
4. Characteristics in time and frequency domain, analysis of typical dynamic elements
5. Solving of multiple regulation circuits
6. Selection of compensator, synthesis of regulation circuit
7. Synthesis of regulation circuit, evaluation of quality
8. Synthesis of regulation circuit by selected characteristic
9. Selection of sampling period of discrete system
10. Analysis and synthesis of discrete systems
11. Quality and accuracy of regulation of discrete systems
12. MIMO and MISO LTI systems
13. Course-unit credit awarding.