Course detail

Automation

FSI-6AA-KAcad. year: 2013/2014

The primary aim of the course is to provide the students with the complete knowledge of the automation and control systems.
The first part of the course makes the students familiar with the logic circuits. It presents logic functions, logic elements, combinational and sequential logic circuits. Minimization of logic functions (Karnaugh map) is discussed.
The second part includes the foundations of linear continuous systems analysis using the transfer function and impulse response of feedback control systems. Mathematical preliminary is the Laplace transform. This part covers the basic feedback theory and stability, accuracy and quality of regulation.
The third part of the course includes the foundations of digital control. It presents mathematical preliminary (Z - transform), digital transfer function and difference equations. It deals with stability condition, stability analysis through bilinear transformation and PID - control algorithm through Z - transform.

Language of instruction

Czech

Number of ECTS credits

6

Mode of study

Not applicable.

Learning outcomes of the course unit

Analysis and design of linear continuous-time and discrete feedback control systems. Students will obtain the basic knowledge of automation, description and classification of control systems, determination of their characteristics. Students will be able to solve problems stability of control systems.

Prerequisites

Fundamental concepts in mathematics including the solution of the system of differential equations . Fundamental concepts in physics (particularly dynamics) and electrical engineering.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

The course is intended for the combined form of study, indivudual work of students is directed by lectures and exercises taught en bloc.

Assesment methods and criteria linked to learning outcomes

In order to be awarded the course-unit credit students must prove 100% active participation in laboratory exercises and elaborate a paper on the presented themes. The exam is written and oral. In the written part a student compiles two main themes which were presented during the lectures and solves three examples. The oral part of the exam will contain discussion of tasks and possible supplementary questions.

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

The aim of the course is to formulate and establish basic conceptions of automatic control, computational models, theories and algorithms of control systems.

Specification of controlled education, way of implementation and compensation for absences

Attendance and activity at the seminars are required. One absence can be compensated for by attending a seminar with another group in the same week, or by the elaboration of substitute tasks. Longer absence can be compensated for by the elaboration of compensatory tasks assigned by the tutor.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Dorf,R.C.-Bishop,R.H.: Modern Control Systems,Addison-Wesley Publishing Company, New York 1995, ISBN 0-201-845559-8
Kuo,B.C.: Automatic Control Systems,Prentice-Hall International Editions, Sixth Edition, New Jersey 1991, ISBN 0-13-053505-2
Ogata,K.: Modern Control Engineering, Prentice Hall, fourth edition, New Jersey 2002, ISBN 0-13-043245-8

Recommended reading

Švarc,I.: Automatizace-Automatické řízení,skriptum VUT v Brně, FSI, CERM Brno 2002, ISBN 80-214-2087-1
Švarc,I.: Teorie automatického řízení, podpory FSI, www stránky fakulty 2003

Classification of course in study plans

  • Programme B2341-3 Bachelor's

    branch B-SSZ , 2 year of study, summer semester, compulsory

Type of course unit

 

Guided consultation

16 hod., optionally

Teacher / Lecturer

Syllabus

1. Introduction to automation. Logic control, logical functions, Boolean algebra laws, formulation of Boolean functions, minimisation using Boolean algebra laws and Karnaugh's maps.
2. NAND, NOR, combinatorial logical circuits, sequential logical circuits, programmable logic controllers.
3. Continuous linear regulation circuit, regulation principle, external and internal description, Laplace transform, differential equation, Laplace transfer.
4. Impulse response function and impulse characteristic, unit step response function and unit step characteristic, classification of regulation elements.
5. Frequency transfer, frequency response in complex plane and logarithmic coordinates, poles and zeroes, block diagram algebra.
6. Controllers, regulation circuit, characteristic equation (stability), Ziegler-Nichols method (simulation version).
7. Stability of linear feedback systems, (necessary and sufficient condition of stability), algebraic stability criteria.
8. Frequency stability criteria, accuracy of regulation (steady-state analysis).
9. Quality of regulation, Ziegler-Nichols method (numerical version), tuning of controllers using unit step response characteristic of controlled system, transport delay, synthesis of regulating circuit.
10. Discrete regulation circuit, sampling circuit (A-D converter), data-hold circuit (D-A converter), Z-transform, difference equation.
11. Z-transfer, discrete impulse response function and characteristic, discrete unit step response function and characteristic, frequency transfer, frequency characteristic in complex plane.
12. Block diagram algebra of discrete systems, digital controllers (positional and incremental algorithm), stability of discrete regulation circuit (general condition).
13. Stability criteria of discrete regulation circuits.

Laboratory exercise

1 hod., compulsory

Teacher / Lecturer

Syllabus

8. Laboratory exercise (laboratory of programmable controllers, laboratory of electrical equipments).
9. Laboratory exercise (laboratory of programmable controllers, laboratory of electrical equipments).