Course detail

Industrial electronics

FEKT-NPELAcad. year: 2014/2015

Bipolar transistors in linear and switching regime. Unipolar transistorsMOSFET and JFET in linear regime. MOSFETs in switching regime. Linear analogue circuits with opamps (amplifiers, filters, oscillators). Non-linear circuits with opamps (comparators, device-rectifiers, controlled limiters, signal generators). Serial and parallel voltage regulators. Constant current sources. Circuity rules with respect to the high internal and external interference imunity. Harmonic oscillators.

Language of instruction

English

Number of ECTS credits

5

Mode of study

Not applicable.

Learning outcomes of the course unit

- The graduate knows the principle of the transistor effect, he can draw the input and output characteristics system. He understands the terms active (linear) regime, switched-off state and switched-on state (saturation).
- The graduate is able to explain and to use the linearized model of a bipolar transistor from the „AC point of view“ using hybrid parameters.
- The graduate is able to do an analysis or synthesis of a DC operating point in any schematics containing bipolar transistors, resistors, DC sources and diodes.
- The graduate is able to do an analysis or synthesis of the complete circuit of a single-transistor amplifier „common emitter“ (also with a non-blocked emitter resistor), „common collector“ and „common base“.
- The graduate is able to do an analysis or synthesis of a double-acting emitter follower. He understands the terms „amplifier class A, A/B and B.
- The graduate is able to do an analysis or synthesis of low-power pulse circuits with bipolar transistors in switching regime. He knows the methods of minimization of the switch-on and switch-off delay including the usage of the anti-saturation diode.
- The graduate knows the operation of unipolar transistors MOSFET and JFET. He understands the system of output and transfer characteristics.
- The graduate can use the linearized model of unipolar transistor using admittance parameters.
- The graduate can design the single-transistor amplifier „common emitter“ with JFET or MOSFET.
- The graduate is able to do an analysis or synthesis of simple driving circuits for a power MOSFET in switching regime.
- The graduate knows the static and dynamic properties of ideal and real operational amplifier.
- The graduate knows the principle of creating the „virtual ground“ due to the high internal gain of the opamp and the existence of a negative feedback.
- The graduate is able to deduce the transfer function of basic circuits with opamps (inverting and non-inverting type – amplifiers, controllers, simple filters). He is able to draw the module frequency characteristics.
- The graduate knows practical consequences (advantages and disadvantages) of inverting and non-inverting connections. He is able to choose the most advantageous solution in a given application regarding the control electronics for pulse converters (low-pass filters + amplifiers, controllers).
- The graduate knows the principle, purpose and practical limitation in usage of differential amplifier with opamp.
- The graduate knows several special connections with opamps.
- The graduate can do an analysis and synthesis of comparators without hysteresis and with a static or dynamical hysteresis.
- The graduate knows practical methods for amplifier EMS increasing (DPS layout, supply wires, blocking, additional filtration capacities, choice of element types, influence of the input resistance etc.).
- The graduate knows the principle of linear voltage controllers – parallel or serial. He can do an analysis and synthesis of several circuits.
- The graduate can deduce the amplitude and phase condition of oscillations. He knows the principle of feedback oscillators.
- The graduate knows the analysis of an LC oscillator with a negative differential resistance.
- The graduate can design the Reinartz oscillator. He knows the analysis and practical consequences (advantages and disadvantages) of other LC oscillators (Snell, Hartley, Colpitts). He understands the term „three-point-oscillator“.
- The graduate can design the RC oscillator with non-inverting amplifier and Wien circuit. He can analyze the RC oscillator with a single-transistor amplifier „common emitter“ and a cascade of three derivation RC circuits.

Prerequisites

- The student should know the calculations with complex numbers.
- The student should be able to use the Kirchhoffs laws – practically, with a clear insight to a concrete circuit situation.
- The student should know the practical approach to the theoretical solution of linear circuits (sequential simplification, superposition principle, replacement of a voltage source with a serial resistance by a current source with the parallel resistance or in the opposite way, Thevenins theorem). He should know to choose the most advantageous method in each situation and to use it, what needs training. He should understand that the loop current or node voltage methods are simple mechanically applicable however they lead to a system of linear equations whose solving is to heavy going and slow and therefore non-effective for hand-made circuit analysis.
- The student should understand the geometrical interpretation of terms derivation, definite/indefinite integral. He must be able to draw a function created as a derivation or an integral of any previously drawn function – for example a constant, rectangle shape, linear growing etc. He must understand concretely the practical meaning of the integration constant.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations.

Assesment methods and criteria linked to learning outcomes

Final examination - 70points
Test - 15points
Laboratories - 15points

Course curriculum

1. Physical description of a bipolar transistor, transistor effect. Setting the DC operating point of bipolar transistors.
2. Linearized model of a bipolar transistor using h-parameters, amplifier input and output impedance - consequencies, common emitter connection (with/without Re) - detai analysis form DC and AC point of view.
3. Common collector and common base connections - detail analysis from DC and AC point of view, double acting emitter follower, transfer distortion and its ellimination.
4. DC current source. Current mirror. Bipolar transistor in switching regime (non-power applications), switching-on and -off delay minimization.
5. Physical description of unipolar transistors, JFET and MOSFET as an amplifier "common emitter" (y-parameters), MOSFET in switching regime.
6. Parallel voltage regulator with Zener diode, serial regulators - principle, design of concrete circuits.
7. Operatinal amplifier (OA) - operation, statical and dynamical parameters.
8. Linear circuits with OA - inverting circuits - amplifiers, filters, controllers.
9. Linear circuits with OA - non-inverting circuits - amplifiers, filters, controllers.
10. Linear circuits with OA - differential circuits. Special (often used) circuits with OA.
11. Non-linear circuits with OA (operational rectifiers, comparators without hysteresis, with statical/dynamical hysteresis).
12. Theory of oscillators with negative differential resistance and feed-back oscillators. Basic sorting of oscillators.
13. Selected RC and LC oscillators - detail description and design.

Work placements

Not applicable.

Aims

Students learn the typical electronic circuits in industrial applications. An attention is paid especially to switching-converters-technique, electric drives and measurement.

Specification of controlled education, way of implementation and compensation for absences

The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Patočka M., Vorel P., Kerlin T.: Řídicí elektronika - laboratorní cvičení (CS)
Patočka M., Vorel P.: Řídicí elektronika - aktivní obvody (CS)
Patočka M., Vorel P.: Řídicí elektronika - pasivní obvody (CS)

Recommended reading

Horowitz, Hill,: The Art of Electronics (EN)
Punčochář: Operační zesilovače (CS)

Classification of course in study plans

  • Programme EECC-MN Master's

    branch MN-SVE , 1 year of study, summer semester, compulsory

Type of course unit

 

Lecture

26 hod., compulsory

Teacher / Lecturer

Syllabus

Chosen transistor circuits.
Amlifiers, filters and oscillators with opamps.
Comparators, non-linear circuits with opamps.
Chosen analogue and pulse integreted circuits.
Circuity of regulation structures.
Pulse transformers.
Special integrated circuits for pulse converters.
TTL and CMOS technologies.
Combinatorial and sequential logical circuits.
Reliability of digital circuits, noise immunity, hazards.
Optoelectronic applications.
Phase loop and its applications.
Special driver circuits.

Laboratory exercise

26 hod., compulsory

Teacher / Lecturer

Syllabus

Introduction.
Basic practical transistor applications.
Amplifiers and filters with opamps.
Harmonic oscillators with opamps.
Comparator applications, functional generators.
Integrated circuit 3843 and its applications.
Driver with a pulse transformer for a MOS-FET.
Combinatorial logic TTL and CMOS.
Digital dead-time solution.
Phase loop with 4046.
Integrated driver IR2132.
Driver for IGBT with HP316J.
Credit.