Course detail
Modelling of Biological Systems
FIT-MOBAcad. year: 2014/2015
Biological system, description of its characteristics. Planning of experiments with biological systems. Theoretical principles of methods used in modelling of biosystems (compartmental analysis, deterministic chaos, fractals, theory of catastrophes, cellular automata). Description of particular models of biological systems, models of populations, epidemic and psychological models, models of biochemical processes, tissue structure modelling, models of basic subsystems of human organism.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
- Syllabus of lectures:
- Basic vocabulary, definition of biosystem, its specificity and characteristics.
- Continuous models of single-species populations, analysis of logistic equation, models with delay.
- Discrete models of single-species populations and their analysis, Leslie model, fundamentals of deterministic chaos theory.
- Discrete models of single-species models with delay, models of interacting populations.
- Fractals, basic types of fractals. Fractal morphological structure of biosystems.
- Multicompartmental analysis, models of biochemical processes.
- Epidemic models and dynamics of infection diseases, venereal diseases, AIDS.
- Disrete systems, finite automata, discrete models of cellular structure.
- Artificial life, cellular automata. Conway's "Life", analysis of cellular automata.
- Catastrophe theory and its application in behavioral models.
- Verification and optimizing of implemented models, computer experiments and its evaluation.
- Human organism as a system, models of subsystems in human body, cardiovascular system.
- Models of subsystems in human body: model of glucose concentration control, control of biochemical processes in intestinal system.
- Continuous models of single-species populations.
- Single species population models with delay, Leslie's model.
- Deterministic chaos, bifurcation diagram.
- Compartmental models of biochemical processes.
- Celullar automata.
- Models of cardiovascular system.
- Discrete models of single-species populations.
- Models of interacting populations.
- Fractals.
- Epidemic models, Venereal diseases, AIDS.
- Conway's "Life".
- Models of glucose control.
Syllabus of computer exercises:
Syllabus - others, projects and individual work of students:
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Classification of course in study plans
- Programme IT-MSC-2 Master's
branch MBI , 0 year of study, winter semester, elective
branch MBS , 0 year of study, winter semester, elective
branch MIN , 0 year of study, winter semester, elective
branch MIS , 0 year of study, winter semester, elective
branch MMI , 0 year of study, winter semester, elective
branch MMM , 0 year of study, winter semester, elective
branch MPV , 0 year of study, winter semester, elective
branch MSK , 0 year of study, winter semester, elective
branch MGM , 0 year of study, winter semester, elective