Course detail
Applied Physics
FAST-BB02Acad. year: 2014/2015
Wave motion, wave equation, intensity of wave, standing waves, Doppler’s law, basic acoustic quantities, architectural acoustic, permeability and damping, relevant time, temperature and heat, thermodynamics, properties of systems, sources and diffusion of warm, illumination and photometry, direct current, alternating current.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
The student´s condition for gaining a credit is measurement of nine
laboratory excercises and creating lab reports on-the-fly. Further,
students must calculate twenty examples given by the teacher. The last
condition is a successful pass of the final test in the form of examples.
The exam consists of written part, which contains four examples and oral
part with four theoretical questions. All topics come from the lectures.
Both parts must be successfully fin
Course curriculum
2.week: Thermometers. Expansion of solids and liquid. Thermal stress. Expansion of gas.
3.week: The equation of state. Basic kinetic theory of gas. Internal energy of an ideal gas.
4.week: The first law of thermogramics. Heat capacity. Calorimetric equation.
5.week: Adiabatic and polytropics changes. The second law of thermodynamics. Heat engines.
6.week: States and phase. Change between liquid and gas. Change between solid and liquid.
7.week: sublimation. Air.
8.week: Sources of heat. Heat transfer.
9.week: Thermal conduction. Stationary conduction of heat through plain wall.
10.week: Passage of heat. Stationary conduction of heat through cylinder surface.
11.week: Radiation of black body.
12. week: Electric current. Ohm’s law. Electromotoric force, work and power. Kirchhoff’s rule. Wheatstone bridge.
13.week: Formation of alternative current. Effective and average value. Resistor, inductor, capacitor. Resonance. AC Power.
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
DUNCAN Tom: Physics. Murray, London, 1987. (EN)
Ficker T.: Fyzikální praktikum II. CERM Brno, 2006. (CS)
Halliday D., Resnick R., Walker J.: Fyzika. VUTIUM a PROMETHEUS, 2001. (EN)
Koktavý B., Koktavý P.: Elektřina a magnetizmus. CERM Brno, 1998. (CS)
SERWAY A. Raymond: Physics. Sounders Coll. Publ., 1995. (EN)
Schauer P.: Akustika. CERM Brno, 2001. (CS)
Schauer P.: Termika a záření. CERM Brno, 1998. (CS)
Recommended reading
Classification of course in study plans
- Programme B-K-C-SI Bachelor's
branch K , 3 year of study, summer semester, compulsory
- Programme B-P-C-MI Bachelor's
branch MI , 4 year of study, summer semester, elective
- Programme B-P-C-SI Bachelor's
branch K , 3 year of study, summer semester, compulsory
- Programme B-P-E-SI Bachelor's
branch K , 3 year of study, summer semester, compulsory
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2.week: Thermometers. Expansion of solids and liquid. Thermal stress. Expansion of gas.
3.week: The equation of state. Basic kinetic theory of gas. Internal energy of an ideal gas.
4.week: The first law of thermogramics. Heat capacity. Calorimetric equation.
5.week: Adiabatic and polytropics changes. The second law of thermodynamics. Heat engines.
6.week: States and phase. Change between liquid and gas. Change between solid and liquid.
7.week: sublimation. Air.
8.week: Sources of heat. Heat transfer.
9.week: Thermal conduction. Stationary conduction of heat through plain wall.
10.week: Passage of heat. Stationary conduction of heat through cylinder surface.
11.week: Radiation of black body.
12. week: Electric current. Ohm’s law. Electromotoric force, work and power. Kirchhoff’s rule. Wheatstone bridge.
13.week: Formation of alternative current. Effective and average value. Resistor, inductor, capacitor. Resonance. AC Power.
Exercise
Teacher / Lecturer
Syllabus
Week 2 first laboratory measurement tasks according to the schedule
Week 3 following measurements according to schedule and commit the previous measurements and calculated examples
Week 4 following measurements according to schedule and commit the previous measurements and calculated examples
Week 5 following measurements according to schedule and commit the previous measurements and calculated examples
Week 6 following measurements according to schedule and commit the previous measurements and calculated examples
Week 7 consultation, corrections, measurement of errorneous exercises
Week 8 following measurements according to schedule and commit the previous measurements and calculated examples
Week 9 following measurements according to schedule and commit the previous measurements and calculated examples
Week 10 following measurements according to schedule and commit the previous measurements and calculated examples
Week 11 following measurements according to schedule and commit the previous measurements and calculated examples
Week 12 following measurements according to schedule and commit the previous measurements and calculated examples
Week 13 exam and submission of the minutes of the previous measurements, credit
Laboratory exercises:
Frequency dependence of sound absorption coefficient
Frequency analysis of sound
Frequency analysis of sound reverberation time in the room
Determination of electrical resistance by direct method
Determination of electrical capacity by direct method
Determination of inductance and quality of coil by direct method
VA characteristics of semiconductor diodes
Determination of transistor characteristics
Determination of elementary charge from transistor characteristics
Determination of specific heat capacity of solids calorimeter
Determination of the coefficient of thermal expansion
Determination of thermal conductivity bricks transient method
Determination of Poisson adiabatic constant of air
Determination of calibration curve thermocouple
Determination of calibration curve thermistor
Determination of calibration curve thermo-diode
Determination of the coefficient of heat pump
The dependence of the coefficient of the absorption of light in translucent materials versus the wavelength of light
Determination of the total luminous flux of the point light source
Acoustic emission during static stress of concrete sample
Determination of roughness of fracture surfaces by means of the confocal microscope