Přístupnostní navigace
E-application
Search Search Close
Course detail
FSI-QPAAcad. year: 2015/2016
This course makes students familiar with the most important current computational models used for the development of state-of-the-art combustion engines of motor vehicles. The stress is laid upon the mathematical and physical rudiments of calculation models and the respective software as well as the verification of results of the computer modelling by way of appropriate experimental methods. Finite Element Method (FEM) application, static problems. Dynamic multi-degree-of-freedom systems, modal analysis. Computational analysis of multi-degree-of-freedom forced oscillations. Experimental modal analysis and motion shape analysis. Torsional systems dynamics, natural frequency, forced oscillations. Torsional systems and transmissions, elastic couplings in torsional systems. Crankshaft torsional vibrations, energetic computational methods. Dynamic systems tuning, dynamic dampers application. Elastic machine bedding, elasticity midpoint, central axis of elasticity. Continuum dynamics fundamentals, longitudinal spar oscillations, wave equation. Beam bending oscillations, shaft wheeling oscillations. Membrane and plate oscillations, acoustic problems. Thermodynamic models of real working cycles of internal combustion engines.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Classification of course in study plans
branch M-ADI , 1 year of study, winter semester, compulsory-optional
Lecture
Teacher / Lecturer
Syllabus
Computer-assisted exercise