Course detail

Biomechanics II

FSI-RBIAcad. year: 2015/2016

Basic terminology of musculo-skeletal system. Basic directions and planes. Structure, creation and development of bones, mechanical properties of bones. Joints of bones. The joint, joint development, movements in joints and joint classification. Joint from the mechanical point of view. Basic elements of musculo-skeletal system, its description from the viewpoint of anatomy and mechanics . Development of musculo-skeletal system biomechanics with regard to computational modeling.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Learning outcomes of the course unit

Students will be made familiar with selected anatomical terms substantial in biomechanics, definition of basic elements and couplings in the musculo-skeletal system and their mechanical properties. Review of biomechanical problems solved in the Institute of solid mechanics, mechatronics and biomechanics. Solving some of partial biomechanical problems within the framework of practical lessons.

Prerequisites

Knowledge of basic terms of theory of elasticity (stress, principal stress, strain, general Hooke's law), fundamentals of linear elasticity theory of beams and shells. Fundamentals of theory of limit states (criteria of plasticity and brittle strength).

Co-requisites

Not applicable.

Planned learning activities and teaching methods

The course is taught through lectures explaining the basic principles and theory of the discipline. Exercises are focused on practical topics presented in lectures.

Assesment methods and criteria linked to learning outcomes

Active participation in seminars.
High quality elaboration of individual assignments.
Passing the test of basic knowledge.

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

Mastering of basic terms in biomechanics of musculo-skeletal system. Review of mechanical properties of chosen tissues. Knowledge of basic types of biomechanical themes and of problems in this field. Overview of the biomechanical problems solved in our institute and solving particular problems.

Specification of controlled education, way of implementation and compensation for absences

Participation in seminars is required. An apologized absence can be compensed by individual projects controlled by the tutor.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

KŘEN, Jiří, Josef ROSENBERG a Přemysl JANÍČEK. Biomechanika. Plzeň: Západočeská univerzita, 1997. ISBN 80-7082-365-8.
Nigg B.M., Herzog W. Biomechanics of the Musculo-skeletal Systém, Třetí vydání. Wiley, 2007. ISBN: 978-0-470-01767-8
Valenta, Jaroslav a kol. Biomechanika. Academia Praha, 1985.

Recommended reading

Dungl Pavel a kol. Ortopedie, První vydání, Praha: Grada, 2005. ISBN 80-247-0550-8
KONVIČKOVÁ Svatava, VALENTA Jaroslav. Biomechanika člověka: svalově kosterní systém. II. díl, Nakladatelství ČVUT Praha, 2007, ISBN: 978-80-01-03896-3 (brož.)
Valenta Jaroslav, KONVIČKOVÁ Svatava. Biomechanika člověka: svalově kosterní systém. 1. díl, Nakladatelství ČVUT Praha, 2006, ISBN: 80-01-01452-5 (brož.)

Classification of course in study plans

  • Programme N3901-2 Master's

    branch M-IMB , 2 year of study, winter semester, compulsory-optional
    branch M-MET , 2 year of study, winter semester, compulsory-optional

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

1.Biomechanics of musculo-skeletal system, specifics of biomechanical problems.
2.Definition of basic parts of human body, its planes and directions.
3.Structure of bones, their genesis, evolution, shape.
4.Mechanical properties of bones.
5.Junctions between bones by tissues and joints. Systemization, movements and mechanical properties of joints.
6.Skeleton, basic parts, division, significance and function from the biomechanical viewpoint.
7.Pelvis, junctions in pelvis, joints in pelvic girdle, force conditions.
8.Lower extremity, its parts, and static equilibrium.
9.Skeleton of the upper extremity, its parts, junctions in the upper extremity.
10.Backbone, its elements, movements, injuries.
11.Spinal fixators.
12.Thorax, junctions in thorax and movements of ribs.
13.Implants and alloplastics.

Computer-assisted exercise

13 hod., compulsory

Teacher / Lecturer

Syllabus

1.Biomechanical problems solved in ISMMB.
2.Hip junction, equilibrium of lower extremity during slow walking.
3.Hip junction, normal state and its geometry.
4.Pathological states of the hip joint.
5.Contact problems and their solutions by FEM.
6.Stress-strain analysis of the hip joint, preparation of the model.
7.Computation and analysis of stresses and deformations in the hip joint.
8.Surgical screws.
9.Preparation of stress-strain analysis, screw-bone.
10.FE model of the system screw-bone.
11.Computation and analysis of stress-strain states in the system screw-bone.
12.Prostheses and fixators.
13.Test, credit.