Course detail

Polymer Prototypes

FSI-ZPPAcad. year: 2015/2016

Plastics are the most versatile material widely used in all sectors from the packaging industry, civil engineering, till automotive, aerospace and healthcare. Design of plastic parts is closely associated with production technology and knowledge in the design of plastic parts and are highly prized in practice. Students will learn about the basic chemical nature and structural properties of polymer materials, plastic injection molding technology and design principles for the design of injection molds, vacuum molding technology of plastics and vacuum casting into silicon molds.
The course has been upgraded with the support of the OPVK project. Project "The Studio of digital sculpture and new media", reg. No. CZ.1.07/2.2.00/28.0278, is co-financed by the European Social Fund and the statebudget of the Czech Republic.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Learning outcomes of the course unit

Students will learn about the properties and the suitability of the engineering polymeric materials. They will gain knowledge of injection molding technology and design principles for the design of injection molds. Students will get practical experience with the technologies of vacuum forming of plastics, and vacuum casting into silicon molds and with the posibilities of tools manufacturing for these technologies. Acquired knowledge will enable them to design products from plastic materials and effectively choose the production technology of the prototype within the design phase of product development.

Prerequisites

Knowledge and experience of design with CAD (Inventor, Catia, Rhinoceros, Creo Parametric), knowledge of design principles for castings.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

The course is taught through lectures explaining the basic principles and theory of the discipline. Teaching is suplemented by practical laboratory work.

Assesment methods and criteria linked to learning outcomes

Graded course-unit credit is awarded on the following conditions: active participation in the seminars. Knowledge of principles of discussed technologies, including problems and limitations in their applications. Furthermore, it is necessary to prove knowledge by submitting manufactured prototype without serious deficiencies. Another evaluation criterion is written examination of theoretical knowledge, focused on essence of discussed problems, their solution and applications.

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

The aim of the course is to provide theoretical and practical experience in the design and manufacture of plastic parts and prototypes. Students become familiar with the technologies of serial and prototype production of plastic parts and with the design and technological limitations and design procedures that are required by different technologies.

Specification of controlled education, way of implementation and compensation for absences

Attendance at lectures is recommended; attendance at laboratory practicals is obligatory and checked by the lecturer. Compensation of missed lessons depends on the instructions of course supervisor.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Řehulka Z, Konstrukce výlisků z plastů a forem pro zpracování plastů, Sekurkon 2006 (CS)
Řehulka Z, Základní a technické polymery, Sekurkon 2006 (CS)
Sias, F. R. , Lost-wax casting, Woodsmere Press 2005, 0-9679600-0-2 (EN)
Sias, F. R. , Lost-wax casting, Woodsmere Press 2005, 0-9679600-0-2 (EN)
Throne, James L., Understanding thermoforming, Hanser Verlag 2008, 978-1-56990-428-2 (EN)
Throne, James L., Understanding thermoforming, Hanser Verlag 2008, 978-1-56990-428-2 (EN)
Zeman, Lubomír, Vstřikování plastů, BEN 2009, 978-80-7300-250-3 (CS)
Zeman, Lubomír, Vstřikování plastů, BEN 2009, 978-80-7300-250-3 (CS)

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme N2301-2 Master's

    branch M-KSI , 2 year of study, winter semester, compulsory

Type of course unit

 

Lecture

13 hod., optionally

Teacher / Lecturer

Syllabus

1.- 2. Polymeric materials, classification, chemical nature.
3.- 4. Polymeric materials,transition temperatures, rheology, degradation.
5.- 6. Production of polymers,properties and behavior.
7.- 8. Plastic component design, gating systems.
9.- 10. Principles of design of plastic parts, moulds cooling.
11.- 12. Mechanical systems of injection moulds, moulds venting, examples of moulds design.
13. Excursion to the Arburg company, manufacturer of injection molding machines and tools.