Course detail

Mathematical Structures

FSI-SSR-AAcad. year: 2015/2016

The course will familiarise students with basic concepts and results of the theory of mathematical structures. A number of examples of concrete structures will be used to demonstrate the exposition.

Language of instruction

English

Number of ECTS credits

4

Mode of study

Not applicable.

Offered to foreign students

Of all faculties

Learning outcomes of the course unit

Students will acquire the ability of viewing different mathematical structures from a unique, categorical point of view. This will help them to realize new relationships and links between different branches of mathematics. The students will also be able to apply their knowledge of the theory of mathematical structures, e.g. in computer science.

Prerequisites

Students are expected to know the mathematics taught within the bachelor's study programme and the graph theory taught in the master's study programme.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

The course is taught through lectures explaining the basic principles and theory of the discipline.

Assesment methods and criteria linked to learning outcomes

The graded-course unit credit is awarded on condition of having passed a written test.

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

The aim of the course is to show the students possibility of a unified perspective on seemingly different mathematical subjects.

Specification of controlled education, way of implementation and compensation for absences

Since the attendance at lectures is not compulsory, it will not be checked, and compensation of possible absence will not be required.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

A.Adámek, H.Herrlich. G.E.Strecker: Abstract and Concrete Categories, John Willey & Sons, New York, 1990 (EN)
Jiří Adámek, Theory of Mathematical Structures, D. Reidel Publ. Company, Dordrecht, 1983. (EN)

Recommended reading

Jiří Adámek, Matematické struktury a kategorie, SNTL Praha, 1982 (CS)

Classification of course in study plans

  • Programme N3901-2 Master's

    branch M-MAI , 2 year of study, summer semester, compulsory

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

1. Sets and classes
2. Mathematical structures
3. Isomorphisms
4. Fibres
5. Subobjects
6. Quotient objects
7. Free objects
8. Initial structures
9. Final structures
10.Cartesian product
11.Cartesian completeness
12.Functors
13.Reflection and coreflection