Course detail

Mathematics I

FCH-BCT_MAT1Acad. year: 2015/2016

Basics of calculus of functions of one real variable. Basics of linear algebra.

Language of instruction

Czech

Number of ECTS credits

8

Mode of study

Not applicable.

Learning outcomes of the course unit

The knowledge and skills will appear on the following fields
1. Students will manage successfully a work with matrices.
2. Students will be endowed with the knowledge of elementary functions and their properties. Students are expected to manage the concept of a limit and derivative and comprehend their meaning.They master their computation applying basic rules including the L´Hospital rule. Students will also be able to investgate the course of a function of one variable.
3. Students will be endowed with the knowledge of the indefinite and definite integral including the improper integral. They learn the basic methods of integral computations and be aquaitanced with the basic applications.
4. Students will be acquainted with the elementary commands of MATLAB and will be able to apply them for computations.
5. Students obtain the ability of solving simple tasks of the physical character and tasks occuring in the advanced courses.

Prerequisites

Elementary knowledge of mathematics on the level of the secondary school. Linear and quadratic equations, inequalities, elements of the geometry of lines and planes.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

The course uses teaching methods in form of Lecture - 2 teaching hours per week, seminars - 2 teaching hours per week. The e-learning system (LMS Moodle) is available to teachers and students.

Assesment methods and criteria linked to learning outcomes

A course-credit unit is obtained on the base of a regular an active participation on practices and obtaining the required number of marks from three tests written during the semester. Obtaining a credit is a necessary condition for siting for the examination, which consists of the written test. Results from practices are included to the total rating of the subject.

Course curriculum

1. Numbers, expressions, equations. Number sets, expressing numbers, percentages.
2. Sequences. Limit of sequences.
3. The functions of one real variable. Basic properties, graphs. Inverse functions.
4. Derivative, its geometric and physical meaning, evaluations, applications.
5. Basic properties of functions - with an emphasis on the extremes.
6. Taylor polynomial. Infinite series (elementary approach, without the convergence criteria.) Taylor series.
7. Functions derived from the data (polynomial interpolations, splines, least squares method).
8. Curves given parametrically.
9. The primitive function and the indefinite integral. Basic methods of integration.
10. The definite integral, Newton and Riemann definition. Geometric and physical applications of integrals.
11. Vectors and matrices. Linear independence, rank of matrices, determinants.
12. Matrix Algebra with applications (translation, rotation). The inverse matrix.
13. Geometry of E2 and E3. Selected tasks with applications in chemistry.

Work placements

Not applicable.

Aims

The aim of the course is making acquitance with the basic concepts of mathematics necessary for managing the following courses of physics, chemistry and engineering disciplines. Another claim is obtaining the basic principles of mathematical thinking and skills and applying them in the above mentioned courses.

Specification of controlled education, way of implementation and compensation for absences

Attendance at seminars is obligatory, at lectures recommended.
Credit requirements: In seminars are 2 written tests (each at most 12 points) and a semestral work from the computer support (up 1 point). In total in the exercises can receive a maximum of 25 points. Students have to obtain at least 6 points from each written test.
The exam is written.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Bayer J., Polcerová M.: Analytická geometrie v příkladech. Skriptum FCH VUT v Brně (CS)
Karásek J., Mezník I.: Matematika pro strojní fakulty. SNTL Praha (CS)
Škrášek J., Tichý Z.: Základy aplikované matematiky 1 SNTL Praha 1989, ISBN 80-03-00150-1 (CS)
Švarc S., Krupková V., Studená V.: Matematická analýza I. Skriptum VUT Brno (CS)
Veselý P., Matematika pro bakaláře. VŠCHT Praha (CS)

Recommended reading

Bican L.: Lineární algebra. Academia Praha (CS)
Bubeník, F.: Mathematics for Engineers. ČVUT Praha (CS)
Eliáš J., Horváth J., Kajan J., Šulka R.: Zbierka úloh z vyššej matematiky. ALFA Bratislava (CS)
Howard A., Irl B., Stephen D.: Calculus. John Wiley and Sons (CS)
Jordan, D.W., Smith, P.,: Mathematical Techniques. Oxford (CS)
Karásek J.: Matematika II. Skriptum FSI VUT v Brně (CS)
Rektorys K.: Přehled užité matematiky, díl I, II. Prometheus Praha. (CS)

Classification of course in study plans

  • Programme BPCP_CHTP Bachelor's

    branch BPCO_CHP , 1 year of study, winter semester, compulsory
    branch BPCO_BT , 1 year of study, winter semester, compulsory

  • Programme BKCP_CHTP Bachelor's

    branch BKCO_PCH , 1 year of study, winter semester, compulsory
    branch BKCO_BT , 1 year of study, winter semester, compulsory

  • Programme BPCP_CHCHT Bachelor's

    branch BPCO_SCH , 1 year of study, winter semester, compulsory
    branch BPCO_CHMN , 1 year of study, winter semester, compulsory
    branch BPCO_CHM , 1 year of study, winter semester, compulsory
    branch BPCO_CHTOZP , 1 year of study, winter semester, compulsory

  • Programme BKCP_CHCHT Bachelor's

    branch BKCO_CHTOZP , 1 year of study, winter semester, compulsory
    branch BKCO_SCH , 1 year of study, winter semester, compulsory
    branch BKCO_CHM , 1 year of study, winter semester, compulsory

  • Programme CKCP_CZV lifelong learning

    branch CKCO_CZV , 1 year of study, winter semester, compulsory

  • Programme BPCP_CHCHT_AKR Bachelor's

    branch BPCO_SCH , 1 year of study, winter semester, compulsory

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

1. Čísla, výrazy, rovnice. Číselné množiny, vyjádření čísel, procenta.
2. Posloupnosti. Limita posloupnosti.
3. Funkce jedné reálné proměnné. Základní vlastnosti, graf. Inverzní funkce.
4. Derivace, geometrický a fyzikální význam, výpočet, aplikace.
5. Vyšetření průběhu funkce - s důrazem na extrémy funkce.
6. Taylorův polynom. Nekonečné řady (elementárně, bez konvergenčních kritérií.) Taylorova řada.
7. Funkce získané z dat (interpolační polynomy, splajny, metoda nejmenších čtverců).
8. Křivky dané parametricky.
9. Primitivní funkce a neurčitý integrál. Základní integrační metody.
10. Určitý integrál, Newtonova a Riemannova definice. Geometrické a fyzikální aplikace integrálu.
11. Vektory a matice. Lineární nezávislost, hodnost matice, determinant.
12. Maticová algebra s aplikacemi (posunutí, rotace). Inverzní matice.
13. Geometrie v E2 a v E3. Vybrané úlohy s aplikacemi v chemii.