Course detail
Electrical Power Generation
FEKT-BVEEAcad. year: 2016/2017
The subject makes students familiar with the problems of the conversion of different forms of energy from natural sources and the technological processes of the conversion in thermal, nuclear and hydroelectric power plants.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
- Discuss the advantages and disadvantages of energy sources
- Define and explain the fundamental terms of energy
- Describe the full technology of thermal power plants (condensing plants, gas plants, heating plants, combined cycle, cogeneration units)
- Explain the principles of nuclear reactions
- Discuss the advantages and disadvantages of different types of nuclear reactors
- Explain the principle of hydropower
- Defining the principles of operation of electrical generators
Prerequisites
Students must be able to explain and clarify the following issues:
- Basic thermal processes
- Thermal cycle of gas turbine
- Fundamental laws of thermodynamics
- Thermodynamic properties of gases
Co-requisites
Planned learning activities and teaching methods
Teaching consists of lectures, laboratories and numerical exercises. The communication platform of the course is on e-learning. Students pass five laboratory exercises. Planning is one specialized excursion.
Assesment methods and criteria linked to learning outcomes
During the semester, students are obliged to pass four control written tests, laboratory tasks and voluntary individual tasks. Requirements to get the credit are to obtain at least 20 points from 40 possible and NONE of the required activities (tests, laboratory tasks) is evaluated with 0 points.
The final exam is evaluated by up to 60 points and is divided into written (arithmetical problems - 20 points) and an oral part (40 points). Necessary requirement to pass the examination is to obtain at least 12 points from the written part and at least 20 points from the oral part.
Course curriculum
1. Energy sources, electric power generation in the Czech Republic, the basic energy concepts and terminology
2. Condensing power plants, thermal cycle, technological circuits and equipment - calculations of thermal cycles
3. Increasing the efficiency of thermal power plants (reheating, overheating, regeneration)
4. Combined production of electricity, the combustion turbine power plant
5. Effect of thermal power plants on the environment
6. Possibility of release of nuclear energy, basic concepts - elementary calculations of nuclear reactions
7. Types of nuclear reactors, nuclear power plant technology diagram - operational calculations of nuclear power plants
8. Nuclear safety, fuel cycle, nuclear power plants impact on the environment
9. Energy balance and energy utilization of water flows - basic hydroelectric calculations
10. Distribution and structure of hydraulic power plants, design and scheme of hydraulic power plant - operating hydraulic power plant calculations
11. Electric power scheme, power plant internal load
12. Alternators in thermal, nuclear and hydraulic power plants
13. Excitation systems of synchronous generators, new technologies in generation of electric power and thermal energy
Practice of professional basis:
1. Load diagram - the load characteristics, curve of load duration, the integral curve
2. Basic calculations of thermal cycle with condensing and back pressure turbine
3. Heat balance of cycle with condensing extraction turbine, steam reheating and overheating
4. Calculation of regeneration thermal cycle
5. Basic calculations of nuclear reactions
6. Hydraulic power plants calculations
Laboratory tasks:
1. Analysis of the dependence of active and reactive power on changes of the frequency of a synchronous machine in an isolated network
2. Operating characteristics of synchronous generator working to stable network
3. Simulation of the operating characteristics of wind turbine with asynchronous generator
4. Operating characteristics of synchronous power source working to an isolated network
5. Measurement of synchronous machine parameters (short and open circuit conditions)
6. Analysis of operational conditions of cogeneration unit
7. Excursion to the thermal power plant (presentation of the process circuit)
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
MASTNÝ, P.; DRÁPELA, J.; MACHÁČEK, J.; PTÁČEK, M.; RADIL, L.; BARTOŠÍK, T.; PAVELKA, T.; MIŠÁK, S. Obnovitelné zdroje elektrické energie. EFEKT. Praha, České vysoké učení technické v Praze. 2011. 256 p. ISBN 978-80-01-04937-2. (CS)
Matoušek,A.: Výroba elektrické energie. Brno 2007 (CS)
Recommended reading
Kadrnožka,J.:Tepelné elektrárny a teplárny.SNTL Praha 1988 (CS)
MATOUŠEK, A. Elektrárny 1. 2002. (CS)
Štoll,Č. a kol:Využití vodní energie,SNTL Praha 1987 (CS)
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Operation of technological equipment,operation charakteristics
Basic principles of steam boiler and steam turbine control
Power plant influence on the environment
Types of nuclear power plants and nuclear reactors
Nuclear power plants with pressurized water reactors
Fundamentals seminar
Teacher / Lecturer
Syllabus
Basic calculations concerning the theory of nuclear reactors, reactor power, basic hydrologic calculations
Laboratory exercise
Teacher / Lecturer
Syllabus
Power factor compensation of an asynchronous generator
Electromechanic protective devices of an alternator
Digital protective devices of an alternator
Parallel operation of alternators