Course detail
Selected parts from mathematics I
FEKT-BVPAAcad. year: 2016/2017
The aim of this course is to introduce the basics of calculation of local, constrained and absolute extrema of functions of several variables, double and triple inegrals, line and surface integrals in a scalar-valued field and a vector-valued field including their physical applications.
In the field of multiple integrals , main attention is paid to calculations of multiple integrals on elementary regions and utilization of polar, cylindrical and sferical coordinates, calculalations of a potential of vector-valued field and application of integral theorems.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
- calculate local, constrained and absolute extrema of functions of several variables.
- calculate multiple integrals on elementary regions.
- transform integrals into polar, cylindrical and sferical coordinates.
- calculate line and surface integrals in scalar-valued and vector-valued fields.
- apply integral theorems in the field theory.
Prerequisites
From the BMA1 and BMA2 courses, the basic knowledge of differential and integral calculus and solution methods of linear differential equations with constant coefficients is demanded. Especially, the student should be able to calculate derivative (including partial derivatives) and integral of elementary functions.
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Written examination is evaluated by maximum 70 points. It consist of seven tasks (one from extrema of functions of several variables (10 points), two from multiple integrals (2 X 10 points), two from line integrals (2 x 10 points) and two from surface integrals (2 x 10 points)).
Course curriculum
2) Vector analysis
3) Local extrema
4) Constrained and absolute extrema
5) Multiple integral
6) Transformation of multiple integrals
7) Applications of multiple integrals
8) Line integral in a scalar-valued field.
9) Line integral in a vector-valued field.
10) Potential, Green's theorem
11) Surface integral in a scalar-valued field.
12) Surface integral in a vector-valued field.
13) Integral theorems.
Work placements
Aims
Mastering basic calculations of multiple integrals, especialy tranformations of multiple integrals and calculations of line and surface integrals in scalar-valued and vector-valued fields.
of a stability of solutions of differential equations and applications of selected functions
with solving of dynamical systems.
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
GARNER, L.E.: Calculus and Analytical Geometry. Brigham Young University, Dellen publishing Company, San Francisco,1988, ISBN 0-02-340590-2.
KRUPKOVÁ, V.: Diferenciální a integrální počet funkce více proměnných,skripta VUT Brno, VUTIUM 1999, 123s.
Classification of course in study plans
- Programme EECC Bc. Bachelor's
branch B-SEE , 2 year of study, summer semester, elective interdisciplinary
branch B-TLI , 2 year of study, summer semester, elective interdisciplinary
branch B-EST , 2 year of study, summer semester, elective interdisciplinary
branch B-AMT , 2 year of study, summer semester, elective specialised
branch B-MET , 2 year of study, summer semester, elective interdisciplinary - Programme EEKR-CZV lifelong learning
branch EE-FLE , 1 year of study, summer semester, elective interdisciplinary
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2.Multiple integrals.
3.Transformation of multiple integrals.
4.Improper multiple integrals.
5.Lines in Rn, undirected line integral.
6.Directed line integral, indenpedence on an
integrable way.
7.Surfaces in R3, undirected surface integral.
8.Orientation of a surface, directed surface
integral.
9.Integral theorems.
10.Systems of differential equations, elementary
methods of solving.
11.General methods of solving of differential
equations.
12.Solving of systems of differential equations
with selected rightside,stability of solutions.
13.Criterions of stability of solutions.