Course detail

Elements of Digital Signal and Image Processing

FEKT-MEDSAcad. year: 2016/2017

The course is intended as an introduction to signal and image processing and analysis in the English language.

Language of instruction

English

Number of ECTS credits

3

Mode of study

Not applicable.

Learning outcomes of the course unit

After completing the course, the student is capable of:
- interpreting the fundamental knowledge, concepts and their relationships in the field of signal and image processing,
- describing the basic methods in this area,
- using English terminology in the area, and reading the respective literature in English with understanding.

Prerequisites

successful completion of Bachelor study in the respective study branch, particularly:
- basic university mathematics, including the complex integral transforms
- introduction to continuous-time system theory

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations. Techning methods include lectures. Course is taking advantage of e-learning (Moodle) system.

Assesment methods and criteria linked to learning outcomes

credits based on attending the lectures and on results of a written test (use of English terminology)

Course curriculum

1. Fundamental concepts of signal theory and signal processing systems.
2. Digital signals - sampling and reconstruction, discrete spectra.
3. Principles and properties of digital linear filtering - FIR filters.
4. Principles and properties of digital linear filtering - IIR filters.
5. Noise suppression and signal restoration – averaging methods, optimal filtering.
6. Discrete correlation analysis
7. Discrete spectral analysis (deterministic signals)
8. Discrete spectral analysis (stochastic signals)
9. Basics of analogue image representation, two-dimensional signals and systems.
10. Discrete and digital images, 2D discrete transforms.
11. Basic 2D image processing operators, contrast and colour transforms.
12. Image enhancement - sharpening, noise suppression.
13. Introduction to reconstruction of images from tomographic projections.

Work placements

Not applicable.

Aims

Providing basic knowledge of English terminology in the area of signal and image processing and analysis.

Specification of controlled education, way of implementation and compensation for absences

The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

J.Jan: Číslicová filtrace, analýza a restaurace signálů, VUTIUM 2002
J.Jan: Digital Signal Filtering, Analysis and Restoration, IEE London (UK) 2000, ISBN 0 85296 760 8
J.Jan: Medical Image Processing, Reconstruction and Restoration. CRC 2006

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme EEKR-M Master's

    branch M-TIT , 2 year of study, summer semester, elective general
    branch M-BEI , 2 year of study, summer semester, elective general
    branch M-MEL , 2 year of study, summer semester, elective general
    branch M-EVM , 2 year of study, summer semester, elective general
    branch M-KAM , 2 year of study, summer semester, elective general
    branch M-EEN , 2 year of study, summer semester, elective general
    branch M-EST , 2 year of study, summer semester, elective general
    branch M-SVE , 2 year of study, summer semester, elective general
    branch M-TIT , 1 year of study, summer semester, elective general
    branch M-BEI , 1 year of study, summer semester, elective general
    branch M-MEL , 1 year of study, summer semester, elective general
    branch M-EVM , 1 year of study, summer semester, elective general
    branch M-KAM , 1 year of study, summer semester, elective general
    branch M-EEN , 1 year of study, summer semester, elective general
    branch M-EST , 1 year of study, summer semester, elective general
    branch M-SVE , 1 year of study, summer semester, elective general

  • Programme EEKR-M Master's

    branch M-EST , 2 year of study, summer semester, elective general
    branch M-KAM , 2 year of study, summer semester, elective general
    branch M-SVE , 2 year of study, summer semester, elective general
    branch M-MEL , 2 year of study, summer semester, elective general
    branch M-EVM , 2 year of study, summer semester, elective general
    branch M-EEN , 2 year of study, summer semester, elective general
    branch M-TIT , 2 year of study, summer semester, elective general
    branch M-BEI , 2 year of study, summer semester, elective general
    branch M-EST , 1 year of study, summer semester, elective general
    branch M-KAM , 1 year of study, summer semester, elective general
    branch M-SVE , 1 year of study, summer semester, elective general
    branch M-MEL , 1 year of study, summer semester, elective general
    branch M-EVM , 1 year of study, summer semester, elective general
    branch M-EEN , 1 year of study, summer semester, elective general
    branch M-TIT , 1 year of study, summer semester, elective general
    branch M-BEI , 1 year of study, summer semester, elective general

  • Programme EEKR-CZV lifelong learning

    branch EE-FLE , 1 year of study, summer semester, elective general

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

Fundamental concepts of signal theory and signal processing systems -
time and frequency domains, deterministic and stochastic signals. Digital
signals - sampling and reconstruction, discrete spectra. Principles and
properties of digital linear filtering - FIR and IIR filters. Noise
suppression and signal restoration - averaging, optimal filtering.
Discrete correlation analysis and spectral analysis.

Basics of digital image representation, two-dimensional signals and
systems. Basic image processing operators, image enhancement - sharpening,
noise suppression, contrast and colour transforms.