Course detail

Analysis of Radiocommunication Signals

FEKT-MSTKAcad. year: 2016/2017

The proposed structure of the subject focuses on the use of selected mathematical and statistical techniques in modern communication signal processing and wireless communication theory. The goal is to present students with master's degree program Electronics and Communication Engineering specialized mathematical apparatus, which is essential to understanding the principles of modern wireless communications.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Learning outcomes of the course unit

Students after completing the course should be able to solve problems associated with verification and testing assumptions and properties of the investigated phenomena and data files in the telecommunications field.
The student is able to:
- Quantifying the probability of the event
- Distinguishing between the random variables and describe their characteristics
- To test the hypothesis by parametric and non-parametric way
- Describe the probability density by Gaussian mixture models
- Estimating the shape of the spectrum and identify the spectral components
- Identify and test the presence of a signal in noise

Prerequisites

A student who register the course should be able to:
- To compose a simple program in Matlab
- Practicing a mathematical calculation procedures
- Statistical testing of measurements

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations.
Techning methods include lectures and computer laboratories.

Assesment methods and criteria linked to learning outcomes

Requirements for completion of a course are specified by a regulation issued by the lecturer responsible for the course and updated for every. Tests written during semester (2x20 points), final exam (60 points).

Course curriculum

1. Introduction to the subject, probability theory, dependent and independent experiments, conditional probability.
2. Distribution of one-dimensional discrete random variables and its characteristics.
3. Distribution of one-dimensional continuouse random variables and its characteristics.
4. Multinomial random variables.
5. The central limit theorem and the law of large numbers.
6. Introduction to the theory of statistics, point and interval estimation, confidence intervals
7. Hypothesis testing, the parametric and the nonparametric approach.
8. Gaussian mixed models.
9. Random processes (stationarity, ergodicity of stationary processes, energy spectrum, Gaussian process).
10. Transformation of random processes.
11. Orthogonal transformation, Karhunen-Loev transformation, PCA.
12. Spectrum estimation techniques (parametric and nonparametric methods).
13. Detection of hidden signals in noises. ROC curve.

Work placements

Not applicable.

Aims

The proposed structure of the subject focuses on the use of selected mathematical and statistical techniques in modern communication signal processing and wireless communication theory. The goal is to present students with master's degree program Electronics and Communication Engineering specialized mathematical apparatus, which is essential to understanding the principles of modern wireless communications.

Specification of controlled education, way of implementation and compensation for absences

The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

KAY, S.: Intuitive Probability and Random Processing using MATLAB, Springer 2005, 833 pp., ISBN 0-387-24157-4 (EN)
LEVIN, B.: Teorie náhodných procesů a její aplikace v radiotechnice, SNTL Praha: 1965, 568 s. (CS)

Recommended reading

ANDĚL, J., Statistická analýza časových řad. SNTL, Praha (CS)
GOPI, E., S.: Algorithm Collections for Digital Signal Processing Applications Using Matlab, Springer, 2007, 190 pp., ISBN 978-1-4020-6409-8 (EN)
KOBAYASHI, H. et al: Probability, random processes, and statistical analysis, Cambridge University Press, 2012, 780 pp., ISBN 978-0-521-89544-6 (EN)
STEHLÍKOVÁ, B. a kol.: Metodologie výzkumu a statistická inference. 9. vyd. Brno: Folia univ. agric. et silvic. Mendel. Brun., 2009. II. ISBN 978-80-7375-362-7. (CS)

Classification of course in study plans

  • Programme EEKR-M Master's

    branch M-EST , 1 year of study, summer semester, elective specialised

  • Programme EEKR-M Master's

    branch M-EST , 1 year of study, summer semester, elective specialised

  • Programme EEKR-CZV lifelong learning

    branch EE-FLE , 1 year of study, summer semester, elective specialised

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Exercise in computer lab

26 hod., compulsory

Teacher / Lecturer