Course detail
Steel Constructions
FSI-ZOKAcad. year: 2016/2017
Subject connects areas of corrosin prevention and design of steel construction to the one logical frame. Subject brings to students fundamental information of design theory of steel construction in building industries, limiting state theory, dimensioning element of steel construction in building industries, jointing elements of engineering construction, design of indoor construction. At the same time gain knowledge about the complex degradation mechanisms in structural materials, non-ferrous metals, plastics and reinforced concrete structures. Students will also get an overview of how to protect against degradation of metal surfaces with protective coatings, metallization and modern form of anti-corrosion surface treatment, which are applied in all technical sectors from microcomponents through pipelines, ocean freight ship to pressure circuits of nuclear power plants. The practical part is focused on deepening knowledge of engineering analysis by FEM with a focus on steel structures and advanced non-linear problems.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Students will acquire knowledge of the theory of limit states, designing of elements with tension and pressure loading and learn how to practically use computational methods of structural mechanics, design of supporting structures. Students will realize the difference between the design of engineering and civil-engineering structures. Students become familiar with the thermodynamic and kinetic aspects of corrosion, the types of corrosion and their synergistic effects during the application of modern construction materials with metal and macromolecular origin, and with the possibilities of their effective protection.
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Examination: course is finished by the final test. In the test, the student has to prove knowledge from lectures and laboratory exercises.
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Číhal, V.: Mezikrystalická koroze ocelí a slitin. SNTL Praha, 1994
Macháček, J., Studnička, J.: Ocelové konstrukce 2, ČVUT, 2005
Studnička, J., Holický, M., Ocelové konstrukce 20. Zatížení staveb podle Eurokódu. [skripta]. ČVUT Praha, 2003
Studnička, J.: Ocelové konstrukce. [skripta]. ČVUT, 2006
Studnička, J., Ocelové konstrukce 10. Normy. [skripta]. ČVUT Praha, 2006
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Steel construction – design of elements with tension and compression loading.
3. Steel construction – design of elements with bending loading.
4. Steel construction – joining of steel structure components.
5. Steel construction – hall systems.
6. Drawings
7. Introduction to corrosion process.
8. Thermodynamic and kinetics of corrosion processes.
9. Electrochemical corrosion.
10. Corrosion of non-ferrous metals Al, Zn, Ti, Zr, past and future in the application of materials.
11. Protection coatings, metallization and modern types of anti-corrosion surface treatment.
12. Biological corrosion, corrosion of plastics.
13. Corrosion of reinforced concrete structures.
Computer-assisted exercise
Teacher / Lecturer
Syllabus
2. Design of the steel structures, tension and pressure, buckling stability.
3. Design of the steel structures, bending and shear.
4. Design of the steel structures, bolted and welded joints.
5. Steel structures - a parametric model for the FEA.
6. Steel structures - drawning principles.
7. Course-unit credit.