Course detail

Finite Element Method - ANSYS Classic

FSI-ZSY-AAcad. year: 2016/2017

Solving problems in mechanics of the continuum. Variational formulation of FEM. Algorithm of FEM. Basic equation and its solution. Finite element types. Convergence and error estimation. Solving nonlinear problems. ANSYS Classic software system - solving of practical problems. User interface, preprocessing - modelling of geometry, discretization, solution, postprocessing - presentation and analysis of results.

Language of instruction

English

Number of ECTS credits

5

Mode of study

Not applicable.

Offered to foreign students

Of all faculties

Learning outcomes of the course unit

The students will understand the basics of the finite-element method especially with the emphasis placed on practical applications. Students will be able to provide stuctural analysis using finite element method.

Prerequisites

Knowledge in area of solid mechanics, mathematics, numerical methods, machine design and CAD systems.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

The course is taught through lectures explaining the basic principles and theory of the discipline. Exercises are focused on practical topics presented in lectures.

Assesment methods and criteria linked to learning outcomes

Graded course-unit credit is awarded on the following conditions: active participation in the seminars, passing the final test (8th week) based on finite element method theory.

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

The objective of the course is to make students familiar with the fundamentals of finite element method (FEM) and computational modelling of mechanical problems. The education is focused on modelling in ANSYS Classic software system, which is wide-spread in companies, universities, and research centers.

Specification of controlled education, way of implementation and compensation for absences

Attendance at lectures is recommended; attendance at practicals is obligatory and checked by the lecturer. One excused absence can be tolerated without compensation. In case of longer absence, compensation of missed lessons depends on the instructions of course supervisor.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Not applicable.

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme M2I-P Master's

    branch M-KSI , 1 year of study, winter semester, compulsory

Type of course unit

 

Lecture

5 hod., optionally

Teacher / Lecturer

Syllabus

1. Introduction to finite element method. Basic terms and basic quantities in Strength of materials. Variational approach of Lagrange. Ritz method, FEM based on variational approach.
2. Ilustration of FEM on 1D problem. Equilibrium equations in FEM. Link elements. Beam elements.
3. Solid elements - introduction, linear tetrahedral elements.
Solid elements - isoparametric elements; element type selection, free and mapped mesh, discretization of load.
4. Direct and iterative solvers in FEM. Shell elements.
5. Nonlinear problems I. - contact analysis. Nonlinear problems II. - geometrical and material nonlinearity. Convergence and error estimation. Adaptive mesh (h-method, p-method).

Computer-assisted exercise

30 hod., compulsory

Teacher / Lecturer

Syllabus

1. Introductory example - model of tensile test.
2. Modelling of 2D geometry.
3. Modelling of 3D geometry.
4. Link elements transferring tension and compression (2D and 3D analysis).
5. Beam elements (2D and 3D analysis). Gravity load.
6. Stress and strain analysis in 2D.
7. Stress and strain analysis in 3D.
8. Stress and strain analysis of machine part with notch.
9. Shell elements, stress analysis of T-shape pipeline (thin-walled construction).
10. Contact of the ball with flat bottom - creation of computational model.
11. Contact of the ball with flat bottom - solution and analysis of results.
12. Advanced contact analyses (e.g. press-fit joint). Principles of APDL.