Course detail
Numerical Methods II
FSI-3NUAcad. year: 2016/2017
The course is devoted to numerical methods for differential equations. The course deals with the following topics: numerical methods for initial value problems of ordinary differential equations. Numerical methods for solving boundary value problems in ordinary differential equations. Numerical methods for solving partial differential equations of elliptic, parabolic and hyperbolic type. The course is based on the problem-solving environment MATLAB.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
COURSE CLASSIFICATION: A (excellent): 100--90, B (very good): 89--80, C (good): 79--70, D (satisfactory): 69--60, E (sufficient): 59--50, F (failed): 49--0.
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations. SIAM, Philadelphia, 2007.
Moler, C.B.: Numerical Computing with MATLAB, Siam, Philadelphia, 2004.
Shampine, L.F., Gladwell, S., Thompson, S.: Solving ODEs with MATLAB, Cambridge University Press, Cambridge, 2003.
Shampine, L.F.: Numerical Solution of Ordinary Differential Equations, Chapman & Hall, New York, 1994.
Versteeg, H.K., Malalasekera, W.: An Introduction to Computational Fluid Dynamics. Pearson Prentice Hall, Harlow, 2007.
Recommended reading
Hlavička, R.: Numerické metody pro řešení diferenciálních rovnic. Průvodce softwarem a počítačová cvičení v prostředí MATLABu. [on-line], Available from: http://mathonline.fme.vutbr.cz/Numericke-metody-II/sc-1246-sr-1-a-263/default.aspx.
Classification of course in study plans
Type of course unit
Computer-assisted exercise
Teacher / Lecturer
Syllabus
2. Explicit Runge-Kutta methods, step size control, matlab functions ode23 and ode45.
3. Adams methods, predictor corrector technique, variable-step-variable-order approach, matlab function ode113.
4. Stiff initial value problems, backward differentiation methods, matlab functions ode23t, ode15s.
5. Solving selected initial value problems in MATLAB.
6. Boundary value problem for ODE, shooting method, matlab function bvp4c.
7. Boundary value problem for ODE, difference method, finite volume method.
8. Boundary value problem for ODE, finite element method.
9. Elliptic PDE, difference method, finite element method.
10. Elliptic PDE, finite element method - continuation.
11. Parabolic PDE, methods of lines, matlab function pdepe.
12. Second order hyperbolic PDE, methods of lines.
13. First order hyperbolic PDE, method of characteristics.