Course detail
Principles of Measurement in Engineering
FSI-1ZM-KAcad. year: 2016/2017
Basic metrological terms are introduced and their meaning is explained. Also dealt with are the following topics: Physical quantity. Measuring, signal, measuring classification. Basic measurement procedures, measurement facilities, data processing algorithm. Accuracy and errors of the measurement. Results and measurement uncertainty. Measurement methods. Methods of technical diagnostics.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
ORNATSKIJ, P.P. Teoretičeskije osnovy informacionno-izměritělnoj techniki. Kijev: Višča škola, 1976. 431 p.
RIPKA, P.- TIPEK, A.: Master Book on Sensors. Part A and B. Praha: BEN 2003
Recommended reading
HALLIDAY,D., RESNICK,R. and WALKER,J. Fyzika. Brno: VUTIUM 2000. 1198 p.
KUBÁČKOVÁ,L., KUBÁČEK,L. and KUKUČKA,J. Probability and Statiscs in Geodesy and Geophysics. Amsterodam: Elsevier, 1987.
MELOUN,M. and MILITKÝ,J. Kompendium statistického zpracování dat. Praha: Academia, 2002. 764 p.
Classification of course in study plans
Type of course unit
Guided consultation
Teacher / Lecturer
Syllabus
International system of units - SI. SI units classification.
Measurement and its components. Results of measurement.
Procedures of measurement and of experimental data processing (planning of an experiment, measurement running, data processing and interpretation).
Methods of measurement. Direct measurements. Indirect measurements. Evaluation of the measurement uncertainty.
Generalised configurations and functional descriptions of measuring instruments.
Errors in measurement and their classification (random, systematic, relative). Mathematical methods of accuracy and measurement equipment description.
Physical principles of methods of the measurement I (displacement, velocity).
Physical principles of methods of the measurement II (pressure, temperature).
Physical principles of methods of the measurement III (electrical quantities).
Basic overview of information derived from the measurement.
Technical diagnostics.
Laboratory exercise
Teacher / Lecturer
Syllabus
Dependence of the period of a uniform plate upon of the distance between the centre of oscillation and the centre of mass.
Moment of inertia of a body.
Noise of motor.
Calorimetry. Quantity of heat and specific heat.
Viscosity of liquids.
Poisson constant of the air.
Focal length of a convergent lens and a divergent lens.
Spectrography.
Refractometry. Measurement of refractive index.
Thermistor.
Phase difference between the voltage and the current in a ac circuit.
Absorption half-thickness of gamma-rays.
Engineering application of a scattering of beta-rays.
Photodiode.