Course detail

Hydromechanics

FSI-5HY-KAcad. year: 2016/2017

The course presents the basic theory, properties and principal equations of hydrostatics and hydrodynamics as a starting point for analysis of both elementary and advanced hydraulic machines, mechanisms, hydraulic transporting systems, ducts, waterworks, etc.

Language of instruction

Czech

Number of ECTS credits

6

Mode of study

Not applicable.

Learning outcomes of the course unit

Knowledge of principals, terms, laws. Capability of solving of simple hydrostatic and hydrodynamic problems of ideal and viscous fluid. Knowledge of basics of fluid machines.

Prerequisites

Mathematics and physics on the level of the courses passed. Basic knowledge of differential and integral calculus.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

The course is taught through lectures explaining the basic principles and theory of the discipline. Exercises are focused on practical topics presented in lectures.

Assesment methods and criteria linked to learning outcomes

Course-unit credit requirements,
presence on the excercises.Student have to obtain classification not les than E on written tasks. The date of written tasks have to be specified at the begin of semester. Attending of all laboratory excercises. Writing of treatise about accomplished measurings duering laboratory excercises.
Examination.
The goal of examination is to check the students knowledge of laws used in hydromechanics and their application in practise.
Exam has three steps
1. step: test - checks the basic theoretical knowledge from hydromechanics.
2. step: examples - checks the ability to solve some concrete examples from hydrostatics and hydrodynamics.
3. step: oral exam - this part is used for the classification finishing.

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

The course deals with the basic theory and methods of the modern Hydromechanics as a rudiment of all the technicals.

Specification of controlled education, way of implementation and compensation for absences

Seminars and written tasks on the excercises

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

1) Šob, Fr. Hydromechanika. Brno, CERN 2001
2) Fleischner, P., Hydromechanika. Brno, VUT 1981

Recommended reading

Janalík, J., Šťáva, P.,Mechanika tekutin. Ostrava, VŠB 2000

Classification of course in study plans

  • Programme M2I-K Master's

    branch M-STM , 1 year of study, winter semester, compulsory
    branch M-AIŘ , 1 year of study, winter semester, compulsory
    branch M-STG , 1 year of study, winter semester, compulsory

  • Programme B3S-K Bachelor's

    branch B-SSZ , 2 year of study, winter semester, compulsory
    branch B-KSB , 3 year of study, winter semester, compulsory

Type of course unit

 

Guided consultation

22 hod., optionally

Teacher / Lecturer

Syllabus

1.Introduction, Basic Terms and Units, characteristics of fluids.
2.Euler’s Equation of Hydrodystatic, Pascal’s Law, Static Equilibrium of Fluid in Relative
Space.
3.Hydrostatic force on surface. Buoyancy, Flotation and Stability.
4.Hydrodynamic, Introduction, Basic terms, Methods of Flow Description. Continuity Equation,
Euler’s Equation of Hydrodynamic, Bernoulli’s Equation, Momentum Equation.
5.Navier-Stokes‘ Equation, Turbulent flow, Reynold’s Equation.
6.One dimensional fluid flow in pipes. Energy Losses in Pipes. Outflow and Draining
of containers.
7.Open Channel Flow, Sharp-Crested Weirs. Outflow Through Long Pipe, Waterhammer.
8.One Dimensional Flow in Rotating Channel. Basic Energy Equation. Different Pumps
and their Description. Centrifugal Pumps, Energy, Power, Efficiency. Operating Point
of Centrifugal Pumps. Co-operation of Centrifugal Pumps.
9.Turbine, Basic types, Energy, Power, Efficiency.
10.Impulse Turbines and their Design.
11.Laminar Flow.
12.Laboratory and In Situ Measurements of Basic Parametrers.
13.Theory of Similarity, Criteria.