Course detail
Network Architecture
FEKT-KARSAcad. year: 2017/2018
Telecommunication networks, network convergence and service integration. OSI reference model. Data networks, types, data transmission techniques. Network topologies, cabling systems. Network interconnection elements - hubs, switches, routers. Routing techniques. Network technologies - Ethernet, Token Ring, FDDI, DQDB. Virtual LANs. TCP/IP protocol set. Internet, e-mail, remote access, file transfer, www service - HTTP, HTML language. Data network security. Network administration.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
- final written examination - 80 points maximum
Course curriculum
2. Communication services - service division, demands, service description. Network convergence and service integration - reasons, conditions, data transmission techniques.
3. ISO/OSI reference model - layers, their functions. Connection-oriented and connectionless services, reliable and unreliable services.
4. Cable systems. Channel encoding techniques. Transmission capacity sharing techniques.
5. Data networks - characteristics, LANs - types, features, topologies, network elements. Computing architectures in data networks: terminal-server, client-server, peer-to-peer. Network applications.
6. Network interconnection elements - repeaters, HUBs, bridges, switches, routers, gateways. Routing techniques in LANs and WANs.
7. Ethernet technology - 10 Mbps, 100 Mbps, 1000 Mbps, 10 Gbps, 40/100 Gbps - description, standards, access method, network cards, frame formats.
8. Virtual LANs - types, administration. Other data network technologies - Token Ring, FDDI, DQDB.
9. Wireless LANs - architectures, IEEE 802.11 standard family, access methods, frame format, physical layer of various standards, communication procedures, WLAN network security,
10. Reference model TCP/IP - description, addressing, protocols ARP, BOOTP, DHCP.
11. Routing - protocols IP, ICMP, RIP, OSPF, domain name system - DNS. Transport protocols - TCP, UDP.
12. Application protocols - www service HTTP, file transfer FTP, e-mail service - SMTP, secure shell SSH.
13. Network management - model agent-manager, structure of network element properties - network element description database MIB, SNMP protocol, administration tools.
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
MARCHESE, M. QoS over heterogenous network. John Wiley & Sons, 2007. ISBN 978-0-470-01752-4, UK, 2007
NOVOTNÝ, V. Architektura sítí. FEKT VUT v Brně, 2011.
PUŽMANOVÁ, R. Moderní komunikační sítě od A do Z. Computer Press, ISBN 80-251-1278-0, ČR, 2006
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
- Communication services - service division, demands, service description. Network convergence and services integration - reasons, conditions, data transmission techniques.
- ISO/OSI reference model - layers, their functions. Connection oriented and connectionless services, reliable and unreliable services.
- Cable systems. Channel encoding techniques. Transmission capacity sharing techniques.
- Data networks - characteristics, LANs - types, features, topologies, network elements. Computing architectures in data networks: terminal-server, client-server, peer-to-peer. Network applications.
- Network interconnection elements - repeaters, HUBs, bridges, switches, routers, gateways. Routing techniques in LANs and WANs.
- Ethernet technology - 10 Mbps, 100 Mbps, 1000 Mbps, 10 Gbps, 40/100 Gbps - description, standards, access method, network cards, frame formats.
- Virtual LANs - types, administration. Other data network technologies - Token Ring, FDDI, DQDB.
- Wireless LANs - architectures, IEEE 802.11 standard family, access methods, frame format, physical layer of various standards, communication procedures, WLAN network security,
- Reference model TCP/IP - description, addressing, protocols ARP, BOOTP, DHCP.
- Routing - protocols IP, ICMP, RIP, OSPF, domain name system - DNS. Transport protocols - TCP, UDP.
- Application protocols - www service HTTP, file transfer FTP, e-mail service - SMTP, secure shell SSH.
- Network management - model agent-manager, structure of network element properties - network elements description database MIB, SNMP protocol, administration tools.
Laboratory exercise
Teacher / Lecturer
Syllabus
2. IP addressing
3. Measurement of analog telephone
4. DECT cordless communication
5. SIP protocol analysis
6. Network management and analysis of SNMP messages
7. Communication in WLAN networks
8. Quality of service support implementation - DiffServ technology
9. Network reliability assurance at link layer
10. Influence of quality parameters on data services
11. Quality of service support introduction in enterprise networks
12. Exercise substitution
13. Credit test