Course detail
Electrical Machines 2
FEKT-KES2Acad. year: 2017/2018
The course presents the electrical machines from the point of view of basic physical laws in relation to the theory of electrical machines. The course aims to extend the knowledge of magnetic circuits, windings, cooling and to introduce the basic principles of design of electrical machines. The students will be acquainted with finite element method with reference to analysis and design of electrical machines.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
- describe, modify and apply the basic design approach of magnetic circuit and winding to the transformer, permanent magnet DC motor and BLDC motor,
- modify the magnetic circuit and winding of the transformer, electromagnet, permanent magnet DC motor and BLDC motor to meet the required parameters,
- calculate the parameters of the transformer, electromagnet, permanent magnet DC motor, BLDC motor and permanent magnet synchronous motor (steady-state operation),
- explain, calculate and apply the fundamental design factors,
- draw and describe the waveform of magnetic flux density in the air-gap of permanent magnet DC motor, BLDC motor and permanent magnet synchronous motor (PMSM); sketch the slotting effect and the armature reaction effect,
- draw and explain the waveform of the back-emf of DC motor,
- describe the construction, driving and control of BLDC motor and PMSM,
- draw and explain the waveform of the back-emf and idealized phase currents of BLDC motor and PMSM,
- prepare 2D FEM model of the transformer, electromagnet, permanent magnet DC motor, BLDC motor under steady-state operation; compare the results
- prepare basic program using LUA language to control the FEMM program and model.
Prerequisites
- define and explain terms: self and mutual inductance; energy of coil and set of coils; energy density; forces in magnetic field,
- identify the materials usually employed in design of common electrical machines, describe their properties and draw their basic characteristics,
- describe the construction of transformer, electromagnet, DC machine with excitation winding and synchronous machine with excitation winding,
- explain the fundamentals of operation of transformer, electromagnet, DC machine with excitation winding and synchronous machine with excitation winding,
- identify and explain the losses in transformer, DC machine with excitation winding and synchronous machine with excitation winding,
- draw and explain the equivalent circuit of transformer, calculate its parameters from measured values,
- identify the common types of armature winding of DC machines, describe their properties, advantages, disadvantages,
- describe and explain the DC motor commutation process,
- explain the term of armature reaction,
- describe the basic properties of three-phase windings, explain the occurrence of rotating magnetic field.
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Computer exercises and project - maximum 20 points
Final Exam - maximum 70 points; to pass the exam it is necessary to gain at least 30 points.
Course curriculum
1. Electromagnetic field, fundamental equations, introduction to Finite Element Method.
2. Losses and efficiency, materials properties.
3. Transformers, design of magnetic circuit and winding.
4. Application of modern materials, electrical machines dimensioning.
5. Principle of electromagnets, electromechanical energy conversion.
6. Construction and design of electromagnets.
7. DC machines, magnetic circuit, excitation and armature winding.
8. Permanent magnets properties and design of DC permanent magnet motors.
9. Magnetic circuit and construction of permanent magnet synchronous machines and BLDC motor, generated voltage.
10. BLDC motor, design of magnetic circuit and winding.
11. Temperature field and cooling.
12. Design of cooling system of electrical machines.
13. Mechanical analysis for electrical machines.
Computer exercises
1. Introduction to FEMM program. Preprocessor, meshing, postprocessor.
2. Air-core coil, iron-core coil, simple magnetic circuit with one and more coils.
3. Transformer. Magnetostatic analysis.
4. Transformer. AC magnetic analysis.
5. Electromagnet in cartesian coordinates, energy, co-energy, force.
6. Electromagnet in cylindrical coordinates, effect of magnetic circuit design on electromagnet characteristics.
7. Permanent Magnet DC Motor - design.
8. Permanent Magnet DC Motor - FEMM model.
9.BLDC motor - design.
10.BLDC motor - FEMM model.
11. Thermal analysis of electrical machines.
12. Temperature field of transformer.
13. Structural analysis of the rotor.
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Patočka, M.: Magnetické obvody. Elektronický učební text, FEKT, VUT Brno, 2005. (CS)
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Losses and efficiency, materials properties.
3. Transformers, design of magnetic circuit and winding.
4. Application of modern materials, electrical machines dimensioning.
5. Principle of electromagnets, electromechanical energy conversion.
6. Construction and design of electromagnets.
7. DC machines, magnetic circuit, excitation and armature winding.
8. Permanent magnets properties and design of DC permanent magnet motors.
9. Magnetic circuit and construction of synchronous machines, generated voltage.
10. Permanent magnet synchronous machine, BLDC motor, design of magnetic circuit and winding.
11. Temperature field and cooling.
12. Design of cooling system of electrical machines.
13. Mechanical analysis for electrical machines.
Exercise in computer lab
Teacher / Lecturer
Syllabus
2. Air-core coil, iron-core coil, simple magnetic circuit with one and more coils.
3. Transformer. Magnetostatic analysis.
4. Transformer. AC magnetic analysis.
5. Electromagnet in cartesian coordinates, energy, co-energy, force.
6. Electromagnet in cylindrical coordinates, effect of magnetic circuit design on electromagnet characteristics.
7. Wound-Field DC Motor.
8. Permanent Magnet DC Motor.
9. Salient pole and non-salient pole synchronous machine.
10. Permanent magnet synchronous machine and BLDC motor.
11. Thermal analysis of electrical machines.
12. Temperature field of transformer.
13. Structural analysis of the rotor.