Course detail
Mathematics II-B
FSI-BMAcad. year: 2017/2018
The course takes the form of lectures and seminars dealing with the following topics:
Real functions of two and more variables, Partial derivatives - total differentials, Applications of partial derivatives - maxima, minima and saddle points, Lagrange multipliers, Taylor's approximation and error estimates, Double integrals, Triple integrals, Applications of multiple integrals.
Language of instruction
Number of ECTS credits
Mode of study
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
The student can obtain at most 25 points alltogether within the seminars. Condition for the course-unit credit: to obtain at least 6 points from each written test. Students, who do not fulfil conditions for the course-unit credit, can repeat the written test during first two weeks of examination time.
FORM OF EXAMINATIONS:
The exam has an obligatory written part.
In a 120-minute written test, students have to solve the following three problems:
Problem 1: In differential calculus of functions of several variables.
Problem 2: In double integral.
Problem 3: In tripple integral.
Above problems can also contain a theoretical question.
RULES FOR CLASSIFICATION
1. Results from seminars (at most 25 points)
2. Results from the written examination (at most 75 points)
Final classification:
0-49 points: F
50-59 points: E
60-69 points: D
70-79 points: C
80-89 points: B
90-100 points: A
Course curriculum
Work placements
Aims
The course aims to acquaint the students with the theoretical basics of the above mentioned mathematical disciplines necessary for further study of engineering courses and for solving engineering problems encountered. Another goal of the course is to develop the students' logical thinking.
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Thomas G.B. - Finney R.L.: Calculus and Analytic Geometry, 7th edition (EN)
Recommended reading
Karásek J.: Matematika II (skriptum VUT) (CS)
Thomas G.B., Finney R.L.: Calculus and Analytic Geometry (7th edition) (EN)
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Limit of a function in more variables, continuous function.
3. Partial derivative, gradient of a function, derivative in a direction.
4. First-order and higher-order differentials, tangent plane to the graph of a function in two variables, Taylor polynomial.
5. Relative maxima and minima.
6. Lagrange multipliers, absolute maxima and minima.
7. Functions defined implicitly.
8. Definite integral more variables, definition, basic properties.
9. Computing of the integrals using rectangular coordinates.
10. Calculation on elementary (normal) area's, Fubini's theorem.
11.The Jacobian and change of coordinates, transformation of the integrals, polar coordinates.
12.Cylindrical and spherical coordinates.
13.Applications of double and triple integrals.
Exercise
Teacher / Lecturer
Syllabus
Computer-assisted exercise
Teacher / Lecturer
Syllabus