Course detail
Photonics
FSI-RFOAcad. year: 2017/2018
The course provides an introduction to the fundamentals of photonics. The topics covered in the lectures are the following:
Generation of coherent light by lasers and incoherent light by luminescence sources.
Transmission of light in free space through optical components, and scanning of the light by the help of electrically, acoustically, or optically controlled devices.
Detection of light.
These given areas can be widely applied in optical communications, signal processing, sensing, and energy transport.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
IIZUKA,K. Engineering optics. Berlin: Springer, 1983. 489 p.
SALEH,B.E.A and TEICH,M.C. Fundamentals of photonics. New York: Wiley, 1991. 988 p.
Recommended reading
HALLIDAY,D., RESNICK,R. and WALKER,J. Fyzika. Brno: VUTIUM, 2000. 1198 p.
SALEH,B.E.A and TEICH,M.C. Základy fotniky. Praha: matfyzpress, 1994. 1055 p.
YOUNG,M. Optics and lasers. Berlin: Springer, 1993. 343 p.
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Geometrical optics. Paraxial rays. Optical components. Basic optical imaging systems.
Gradient-index optics. Matrix optics.
Polarization. Dichroism. Polarization by reflection. Optical activity.
The superposition of waves: The addition of waves of the same frequency. The addition of waves of the different frequency. Group velocity. Two-beam interference. Interference by reflection from non-identical interfaces.
Interferometers: Young, Murty, Michelson, Mach-Zehnder. The rotating Sagnac interferometer.
Multiple-beam interference. The Fabry-Perot interferometer. Interference filter. Antireflection coating.
Basic theory of diffraction. The Fresnel and the Fraunhofer approximation.
Fraunhofer diffraction from a slit. Fraunhofer diffraction from a periodic array of slits. Diffraction pattern of a circular aperture.
Holography. Holographic interferometry.
Fourier optics. Fourier transform. Abbe theory of imagery. Spatial filtering.
Lasers. Theory of laser oscillation. Characteristics of the lasers output.
Photodetectors.
Electro-optics. Acousto-optics.
Exercise
Teacher / Lecturer
Syllabus
Interferometry.
Localization of the fringes in the two-beam interferometers.
Resolving power and resolution of an imaging system.
The visibility of an interference pattern. Effect of Spectral width on fringe visibility.
Spatial and temporal coherence of the light.
Polarization of the light.