Přístupnostní navigace
E-application
Search Search Close
Course detail
FSI-RNFAcad. year: 2017/2018
The course provides students with the introduction to the most commonly used paradigms of neural networks. Further, it shows technically oriented applications of neural networks and their practical use. The theory part is focused on neural dynamics - mainly it's activation, signals and activation models, synapse dynamics - both supervised and unsupervised learning (competitive learning, back-propagation); network architectures. Furthermore, the neural and fuzzy representation of structured knowledge is compared and used for controllers design.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Classification of course in study plans
branch M-MET , 2 year of study, winter semester, compulsory
Lecture
Teacher / Lecturer
Syllabus