Course detail

Electrical Engineering and Electronics in Physical Experiment

FSI-TEFAcad. year: 2017/2018

The course deals with the properties of elements of electronic circuits and their use in experimental practice. Attention is paid to measuring equipment, generators and counters, filters, feedback elements, signal processing and converters D/A and A/D. Lectures are strongly supported by the practical applications.

Language of instruction

Czech

Number of ECTS credits

3

Mode of study

Not applicable.

Learning outcomes of the course unit

Students whose primary focus is physically-technical, will gain a basic understanding of electronics. The main focus head towards to the practice in laboratory.

Prerequisites

Basic electric and magnetic quantities (electric charge and electric current, vectors of electromagnetic field, integral quantities - electric voltage, magnetic voltage, electric induction flux, magnetic induction flux). Fundamentals of electromegnetism (Coulomb 's law, Biot-Savart's law, Faraday's law, Amper's law). Electric and magnetic properties of matters.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

The course is taught through lectures explaining the basic principles and theory of the discipline. Teaching is suplemented by practical laboratory work.

Assesment methods and criteria linked to learning outcomes

Student should suggest solution of given problem. Disscussion of the presented circuit arrangement follows.

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

The course enables students to brush their knowledge acquired during their previous
study and to extend it.
Students will be made familliar with the principles of modern electrical engineering and electronics which are necessary for the study of other specialized disciplines and particularly to bring off the future technical practice.

Specification of controlled education, way of implementation and compensation for absences

The attendance at seminars is checked at the beginning of the lesson in the laboratory, scored evaluation of lab protocols, scored evaluation based on two check tests during a term. Students can make up for the missed laboratory practice (in justified cases) during the term in other study groups, or the compensatory laboratory practices will be announced at the end of the term by the Department Management.


Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Balabanian N.: Electric Circuits, McGraw-Hill, 1994

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme B3A-P Bachelor's

    branch B-FIN , 3 year of study, summer semester, compulsory

Type of course unit

 

Lecture

13 hod., optionally

Teacher / Lecturer

Syllabus

Electronic circuits
Multimeters, osciloscopes, generators and counters
Capacitance and inductance - Filters, derivative and integral members
Transistors and amplifiers - transistor characteristics and basic use of transistor amplifiers
Diodes - Rectifiers, filters and voltage stabilizers, power supplies
Operational amplifiers - Feedback, basic use of operational amplifiers
Measurement of non-electrical quantities - Basic principles of electrical measurement, converters of physical quantities
Fundamentals of Signal Processing - Measuring chain, signal dynamics, noise and types of noise
Spectral analysis - periodic and aperiodic signal
Digital to analog and analog to digital conversion - Principles of AD / DA converters, sampling, aliasing
Regulation and automation - Basic concepts, continuous and discontinuous regulation, Laplace transform, basic types of regulators