Přístupnostní navigace
E-application
Search Search Close
Course detail
FSI-TFOAcad. year: 2017/2018
The course consists of three parts.The first part is a mathematical one. The Fourier transform of two variables is transformed to polar coordinates and expressed in terms of Hankel's transforms. The Zernike polynomials are used for the description of wave aberrations.The second part of the course deals with the wave description of an image formation by lenses. The problem is exposed by a direct application of the diffraction theory on one hand, and by the use of the formalism of linear systems (transfer function) on the other hand. The light distribution near the focus, the Abbe theory of image formation, the dark field method, the method of the phase contrast, schlieren method, the image processing by influencing the spectrum of spatial frequencies, and the principle of confocal microscopy are discussed.The third part of the course provides an overview of the diffractive optics, of the image formation by zone plates, of optics of Gaussian beams, of laser speckles and their metrological applications. Also dealt with are the fundamentals of holography. The course involves also the history of the Fourier optics as a whole.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Classification of course in study plans
branch M-FIN , 1 year of study, summer semester, compulsory-optionalbranch M-PMO , 1 year of study, summer semester, compulsory-optional
Lecture
Teacher / Lecturer
Syllabus
Exercise