Course detail
Fundamentals of Linear Algebra
FSI-TLAAcad. year: 2017/2018
The course deals with the following topics:
Algebraic operations: groupoids, semigroups, groups, vector spaces, matrices and operations on matrices.
Linear algebra: determinants, matrices in step form and rank of a matrix, systems of linear equations.
Euclidean spaces: scalar product of vectors, eigenvalues and eigenvectors of a square matrix, diagonalization.
Fundamentals of analytic geometry: linear concepts, conics, quadrics.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Form of examinations: The examination has a written and an oral part. In a 120-minute written test, students solve the following 5 problems:
Problem 1: Groupoids, vector spaces, euclidean spaces, eigenvalues and eigenvectors.
Problem 2: Matrices.
Problem 3: Systems of linear equations.
Problem 4: Analytic geometry of linear concepts.
Problem 5: Analytic geometry of nonlinear concepts.
During the oral part of the examination, the examiner goes through the test with the student. The examiner should inform the students at the last lecture about the basic rules of the examination and the evaluation of its results.
Rules for classification: The student can achieve 4 points for each problem. Therefore he/she may achieve 20 points in total.
Final classification:
A (excellent): 19 to 20 points
B (very good): 17 to 18 points
C (good): 15 to 16 points
D (satisfactory): 13 to 14 points
E (sufficient): 10 to 12 points
F (failed): 0 to 9 points
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Jan Slovák, Martin Panák, Michal Bulant a kolektiv Matematika drsně a svižně, 1. vyd. — Brno : Masarykova univerzita, 2013 — 773 s. , Jan Slovák, Martin Panák, Michal Bulant a kolektiv ISBN 978-80-210-6307-5 (CS)
KARÁSEK, J., SKULA, L.: Lineární Algebra. Brno: AKADEMICKÉ NAKLADA-. TELSTVÍ CERM, 2005. 179 p. ISBN 80-214-3100-8. (CS)
Lang, Serge (March 9, 2004), Linear Algebra, Undergraduate Texts in Mathematics, Springer, ISBN 978-0-387-96412-6 (EN)
Recommended reading
Janyška, J., Sekaninová, A.: Analytická teorie kuželoseček a kvadrik, Masarykova univerzita 1996 (CS)
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Groups, subgroups.
3. Vector spaces: definition, linear combination, linear independence.
4. Vector subspace, basis and dimension of a vector space.
5. Matrices and operations on matrices. Rings, commutative rings, zero divisors.
6. Linear algebra: determinants, Cauchy´s theorem, inverse matrix.
7. Matrices in step form, rank of a matrix.
8. Systems of linear equations: Cramer´s rule, elimination method, Frobenius´s theorem, homogeneous systems.
9. Euclidean spaces: scalar product, norm, Schwarz inequality, Gram-Schmidt orthogonalization algorithm.
10. Eigenvalues and eigenvectors of a square matrix, characteristic polynomial, diagonalization. Fundamentals of analytic geometry: cross and mixed products of vectors.
11. Analytic geometry of linear concepts.
12. Analytic geometry of conics.
13. Analytic geometry of quadrics.
Exercise
Teacher / Lecturer
Syllabus
Following weeks: Seminar related to the topic of the lecture given in the previous week.