Course detail
Optimization Methods
FSI-VO1Acad. year: 2017/2018
The course deals with the following topics: The role of optimization methods in operations research, cybernetics and systems sciences. Systems modelling. Systems analysis tasks. Optimization problems. Formulation and properties of optimization problems. Simplex method. Artificial basis applications. Non-linear and convex problems. Quasi-convex programming. Dynamic programming of discrete deterministic processes. Critical Path Method. Examples of applications of operations research methods in technical and economic practice.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
<b>Skills: </b>Students will be able to formulate simple problems of operational research from the practice of mechanical engineering and economics. They will be able to create mathematical models for the above problems, select methods of their solution and implement them using computer technology.
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
BOMZE, L.M.; GROSSMANN, W.: Optimierung Theorie und Algorithmen. BI-Wiss.-Verl., Mannheim, pp. 610, 1993. ISBN 3-411-15091-2.
KLAPKA, J., PIŇOS, P.: Decision support system for multicriterial R&D and information systems projects selection. European Journal of Operational Research. 2002, vol. 140, is. 2, s. 434-446. Dostupný z WWW: .
LITTLECHILD, S.; SHUTLER, M. (eds.): Operations Research in Management. Prentice Hall, New York, pp. 298, 1991. ISBN 0-13638-8183
SKYTTNER, L.: General Systems Theory. An Introduction. Macmillan Press, London, pp. 290, 1996. ISBN 0-333-61833-5.
WINSTON, W.L.: Operations Research. Applications and Algorithms. Thomson - Brooks/Cole, Belmont, 2004.
Recommended reading
KLAPKA, J.; DVOŘÁK, J.; POPELA, P.: Metody operačního výzkumu. VUTIUM, Brno, 2001.
WINSTON, W.L.: Operations Research. Applications and Algorithms. Thomson - Brooks/Cole, Belmont, 2004.
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Problems of the systems analysis. Optimization problems.
3. Formulations and properties of the linear programming problems.
4. Basic theorem of linear programming.
5. Simplex method and its deduction and derivation.
6. Artificial basis method (two-phase simplex method).
7. Dual problem and sensitivity analysis.
8. Convex non-linear problems. Kuhn-Tucker theorem. Wolfe's method for quadratic programming.
9. Quasi-convex nonlinear problems. Linear fractional programming.
10. Bellman Optimality Principle.
11. Dynamic programming of discrete deterministic processes and its applications.
12. Basics of network analysis. Critical Path Method.
13. Multi-criterial optimization and multi-criterial selection.
Exercise
Teacher / Lecturer
Syllabus
2. Formulation of linear problems, graphical solution.
3. Simplex algorithm.
4. Solution of linear problems applying artificial basis.
5. Formulation and solution of simple non-linear problems.
6. Solution of multi-criteria problems.
7. Network analysis. CPM method.
Computer-assisted exercise
Teacher / Lecturer
Syllabus
2. Solution of linear optimization problems by means of GAMS.
3. Solution of non-linear and integer problems in MS Excel.
4. Solution of non-linear and integer problems by means of GAMS.
5. Solution of dynamic programming problems in MS Excel.
6. Solution of multi-criteria problems in MS Excel.