Course detail

Metallic Materials

FSI-WKMAcad. year: 2017/2018

The course Metal Materials familiarises students with constructional and tool metal materials which are used in mechanical engineering nowadays. Lessons are focused on relations among the chemical composition, properties, structure of material, and its use.

Language of instruction

Czech

Number of ECTS credits

8

Mode of study

Not applicable.

Learning outcomes of the course unit

Successful completion of the course will enable students to choose the right materials and use them in practice.

Prerequisites

Students are expected to have general knowledge of mathematics, physics and chemistry acquired at secondary school. They should have the basic knowledge of technological processes of iron and non-iron metals and their alloys, i.e. basic knowledge of metallurgy, foundry, welding, cutting, forming and heat treatment of metals and alloys.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

The course is taught through lectures explaining the basic principles and theory of the discipline. Teaching is suplemented by practical laboratory works.

Assesment methods and criteria linked to learning outcomes

Course-unit credit is awarded on the following conditions: active participation in lessons. Successful completion of control tests regarding the presented topics. The exam has a written and an oral part. The written part is focused on six of the main topics presented in the lectures. In the oral part of the exam a student answers additional and complementary questions.

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

The aim of the course is to provide students with knowledge necessary to choose and use constructional and tool materials in order to reach utility properties. The course is a follow-up to the following courses: "Introduction to Material Science", "Structure and Properties of Materials" and "Non- ferrous Materials". It is intended to deepen and widen the acquired knowledge in the area of engineering applications.

Specification of controlled education, way of implementation and compensation for absences

Attendance at lectures and seminars is compulsory. Absence from seminars may be compensated for by the agreement with the teacher.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

CALLISTER, William D. a David G. RETHWISCH. Materials science and engineering: an introduction. 8th ed. Hoboken: Wiley, 2010, 885 s. ISBN 978-0-470-41997-7. (EN)
ČÍHAL, Vladimír. Korozivzdorné oceli a slitiny. Praha: Academia, 1999. Česká matice technická. ISBN 80-200-0671-0. (CS)
DAVIS, J. R. ASM specialty handbook: Nickel, cobalt, and their alloys. Materials Park, OH: ASM International, 2000. 442 str. ISBN 978-0-87170-685-0. (EN)
FREMUNT, Přemysl a Tomáš PODRÁBSKÝ. Konstrukční oceli. Brno: CERM, 1996, 261 s. ISBN 80-85867-95-8. (CS)
JONES, David R. H. a Michael F. ASHBY. Engineering Materials 1: An Introduction to Properties, Applications and Design. 4. Elsevier Science, 2011. ISBN 0080966659. (EN)
JONES, David R. H. a Michael F. ASHBY. Engineering Materials 2: An Introduction to Microstructures and Processing. 4. Elsevier Science, 2012. ISBN 0080966683. (EN)
POLMEAR, Ian J, David STJOHN, Jian-Feng NIE a Ma QIAN. Light alloys: metallurgy of the light metals. Fifth edition. Oxford: Butterworth-Heinemann, 2017, 525 s. ISBN 978-0-08-099431-4. (EN)

Recommended reading

DORAZIL, Eduard a Jan HRSTKA. Strojírenské materiály a povrchové úpravy. 2. vyd. Brno: Vysoké učení technické v Brně, 1988, 330 s. (CS)
SKOČOVSKÝ, Petr a Tomáš PODRÁBSKÝ. Grafitické liatiny. EDIS ŽU, Žilina, 2005, 168 s. ISBN 8080703906. (SK)

Classification of course in study plans

  • Programme B3A-P Bachelor's

    branch B-MTI , 3 year of study, winter semester, compulsory

Type of course unit

 

Lecture

39 hod., optionally

Teacher / Lecturer

Syllabus

1. Fundamental technologies of iron making.
2. Methods of ladle steel processing (secondary metallurgy).
3. Basic methods of thermal processing of steels in current technical practice.
4. Methods of thermomechanical processing of steels (managed forming).
5. Low carbon structural steels.
6. Weldable steels.
7. Stainless steels, selected heat-resistant and high-temperature steels.
8. Tool steels.
9. Steels for castings, graphite cast iron.
10. Nonferrous metals and alloys I. - Aluminum and its alloys.
11. Nonferrous metals and alloys II. - Magnesium and its alloys, titanium alloys.
12. Nonferrous metals and alloys III. - Nickel alloys.
13. Final summary, tutorials, FAQs students.