Course detail
Nonmetallic Materials
FSI-WNEAcad. year: 2017/2018
The introductory course of non-metallic inorganic materials focused on the structure of ceramic materials and their physical and chemical properties. The lectures provide students not only with theoretical background but also practical information about applications of ceramic materials.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
labs and studios 13 x 1 hrs.
Lecture 1. Bonding in ceramics - Structure of atoms. Ionically bonded solids. Covalently bonded solids. Band theory of the solids
2. Structure of crystalline ceramics – Crystal structures. Binary ionic compounds. Composite crystal structures. Structure of covalent ceramics
3. Structure of glass ceramics – Glass formation. Models of glass structure. Structure of oxide glasses
4. Structural imperfections – Point defects: stoichiometric, nonstoichiometric, intrinsic. Notation of point defects. Linear defects. Planar defects
5. Solid-state reactions in ceramics – Kinetics of heterogeneous reactions. Electrochemical potential in ionic solids. Liquid-solid reactions. Powder reactions. Precipitation in crystalline ceramics
6. Microstructure of ceramics – Characteristics of microstructure. Quantitative analysis. Typical microstructures: advanced ceramics, glasses, glass-ceramics
7. Thermal properties – Thermal stresses. Thermal shock. Microcracking of ceramics. Thermal tempering of glass. Thermal conductivity
8. Mechanical properties - Strength of ceramics. Fracture toughness. Toughening mechanisms. Designing with ceramics. Creep, subcritical crack growth. Fatigue of ceramics
9. Dielectric properties – Basic theory. Polarisation mechanisms. Dielectric loss. Capacitors and insulators
10. Magnetic properties – Basic theory. Para-, ferro-, antiferro- and ferrimagnetisms. Magnetic domains and hysteresis curve. Magnetic ceramics
11. Electrical conductivity in ceramics – Diffusion and conductivity. Ionic conductivity. Electronic conductivity. Solid state galvanic cells
12. Optical properties – Basic principles. Absorption and transmission. Scattering and opacity
13. Applications of ceramics – Engineering ceramics. Electroceramics. Bioceramics
labs and studios
1. Lattice energy, Madelung constant, ionisation energy and fracture ionic characters, coordination number
2. Structure of crystalline and glass ceramics
3. Reactions controlled by diffusion, rate of chemical reaction, activation energy
4. Thermal and mechanical properties of ceramics
5. Diffusion and electrical properties of ceramics
6. Dielectric, magnetic and optical properties of ceramics
Ceramographic analysis of typical ceramic microstructures:
7. Preparation of samples for analysis (cutting, compounding)
8. Preparation of samples for analysis (polishing)
9. Preparation of samples for analysis (thermal etching)
10. Optical microscopy
11. Electronic microscopy
12. Quantitative ceramographic analysis
13. Elaboration of test report
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
D.W.Richerson: Modern Ceramic Engineering,Marcel Dekker,New York 1992 (EN)
J. Cihlář: Chemie slévárenských materiálů, Nakladatelství VUT v Brně, 1991 (CS)
M.W.Barsoum: Fundamentals of Ceramics, IOP Publishing, London 2003 (EN)
V. Šatava: Úvod do Fyzikální Chemie Silikátů: SNTL, Praha, 1965 (CS)
W.D.Kingery, H.K.Bowen and D.R. Uhlmann: Introduction to Ceramics,Wiley, New York 1976 (EN)
Recommended reading
D. Halliday, R. Resnick, J. Walker: Fyzika, Část 2: Mechanika – Termodynamika, VUTIUM, Brno 2000 (CS)
M.W.Barsoum: Fundamentals of Ceramics, IOP Publishing, London 2003
W.D.Kingery, H.K.Bowen and D.R. Uhlmann: Introduction to Ceramics,Wiley, New York 1976
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Structure of crystalline ceramics – Crystal structures. Binary ionic compounds. Composite crystal structures. Structure of covalent ceramics
3. Structure of glass ceramics – Glass formation. Models of glass structure. Structure of oxide glasses
4. Structural imperfections – Point defects: stoichiometric, nonstoichiometric, intrinsic. Notation of point defects. Linear defects. Planar defects
5. Solid-state reactions in ceramics – Kinetics of heterogeneous reactions. Electrochemical potential in ionic solids. Liquid-solid reactions. Powder reactions. Precipitation in crystalline ceramics
6. Microstructure of ceramics – Characteristics of microstructure. Quantitative analysis. Typical microstructures: advanced ceramics, glasses, glass-ceramics
7. Thermal properties – Thermal stresses. Thermal shock. Microcracking of ceramics. Thermal tempering of glass. Thermal conductivity
8. Mechanical properties - Strength of ceramics. Fracture toughness. Toughening mechanisms. Designing with ceramics. Creep, subcritical crack growth. Fatigue of ceramics
9. Dielectric properties – Basic theory. Polarisation mechanisms. Dielectric loss. Capacitors and insulators
10. Magnetic properties – Basic theory. Para-, ferro-, antiferro- and ferrimagnetisms. Magnetic domains and hysteresis curve. Magnetic ceramics
11. Electrical conductivity in ceramics – Diffusion and conductivity. Ionic conductivity. Electronic conductivity. Solid state galvanic cells
12. Optical properties – Basic principles. Absorption and transmission. Scattering and opacity
13. Applications of ceramics – Engineering ceramics. Electroceramics. Bioceramics