Přístupnostní navigace
E-application
Search Search Close
Course detail
FIT-ISDAcad. year: 2017/2018
Tolerance of imprecision and uncertainty as main attribute of ISY. Intelligent systems based on combinations of several theories - neural networks, fuzzy sets, rough sets and genetic algorithms: expert systems, intelligent information systems, machine translation systems, intelligent sensor systems, intelligent control systems, intelligent robotic systems.
Language of instruction
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Classification of course in study plans
branch DVI4 , 0 year of study, summer semester, elective
Lecture
Teacher / Lecturer
Syllabus
Project