Course detail

Knowledge Discovery in Databases

FIT-ZZDAcad. year: 2017/2018

  1. The deepening of basics in KDD - basics of methods of data preprocessing (statistics quantities used in data summarization, approaches to data cleaning, transformation and reduction), basics of data warehousing, basic methods and algorithms of mining frequent items and patterns and association rules (Apriori algorithm, FP-tree, multi-level association rules, mining multidimensional association rules from relational databases), basic methods and algorithms of classification (decision tree, Bayesian classification, using neural networks, SVM) and prediction (linear and nonlinear regression), basic methods and algorithms of cluster analysis (distance of data, partitioning methods, hierarchical methods, CF-tree, density-based methods, grid- and model-based methods).
  2. Advanced data mining techniques - advanced techniques of data mining in 'classic' data sources, mining in data streams, time series and sequences, mining in biological data; mining in graphs, multirelational data mining, mining in object, spatial and multimedia data, mining in text, mining on the Web.

Language of instruction

Czech

Mode of study

Not applicable.

Learning outcomes of the course unit

Students get a broad, yet in-depth overview of the field of data mining and knowledge discovery. They get a deeper view mainly in the field related to the topic of their thesis.

Prerequisites

Students should have basic knowledge in statistics, database systems, information theory, machine learning, neural networks. It is assumed that they have passed some subject on KDD.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Not applicable.

Assesment methods and criteria linked to learning outcomes

Study evaluation is based on marks obtained for specified items. Minimimum number of marks to pass is 50.

Course curriculum

    Syllabus of lectures:
    1. Data preprocessing. 
    2. Data warehousing.
    3. Asociation analysis.
    4. Classification and prediction.
    5. Cluster analysis.
    6. Advanced data mining in 'classic' data sources.
    7. Mining in data streams.
    8. Data mining in time series and sequences.
    9. Mining in biological data.
    10. Data mining in graph structures.
    11. Mining in object, spatial and multimedia data.
    12. Text mining and Web mining.
    13. Mining moving object data.

    Syllabus - others, projects and individual work of students:
    1. Reading up and treatment of a selected topic concerning knowledge discovery in a field related to the student's PhD thesis.

Work placements

Not applicable.

Aims

To deepen students' knowledge in the field of knowledge discovery in databases and other data sources (KDD) with special focus on theoretical foundations of the used techniques, algorithms and models.

Specification of controlled education, way of implementation and compensation for absences

Consultations, elaboration of a given topic, written report and presentation on the final seminar.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Third Edition. Elsevier Inc., 2012, 703 p. ISBN 978-0-12-381479-1.Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Second Edition. Elsevier Inc., 2006, 770 p. ISBN 1-55860-901-3.

Recommended reading

Bishop, CH. M.: Pattern Recognition and Machine Learning. Springer, 2006, 738 p. ISBN 978-0-387-31073-2. Aggarwal, Ch.C. (ed.): Data Streams: Models and Algorithms. Advances in Database Systems. Springer, 2006, 358 p. ISBN 0387287590. Příspěvky  v dostupných časopisech a sbornících konferencí (včetně dostupných v ACM Digital library, IEEE Digital library a jiných elektronických zdrojích).

Classification of course in study plans

  • Programme CSE-PHD-4 Doctoral

    branch DVI4 , 0 year of study, winter semester, elective