Course detail

Analysis of Machine-part Failures

FSI-GA0Acad. year: 2018/2019

In the introductory part of the course, students are familiarized with the fundamental mechanisms of production and operation degradation in metallic materials used in engineering. The knowledge obtained will enable students to determine limit states more accurately, to use materials more effectively and to give a qualified appraisal of failure causes. Students will also be made familiar with methods for determining the causes of defects in machine parts, using specific examples taken over from the literature and from the lecturer´s practical experience (e.g. automobile and aircraft technologies, power engineering facilities, pressure vessels, production machines, etc.). As an integral part of the course, additional information is provided on the most frequently used experimental techniques (chemical analyses, inclusive of microanalysis, metallography, and fractography).

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Learning outcomes of the course unit

Students learn to regard materials as chemically and structurally heterogeneous systems, whose behaviour in real operation conditions is influenced exactly by these heterogeneities. The methodology used in seeking the causes of machine part failures will enable students to solve these problems in connection with the interplay of heterogeneous material, type of loading, and action of ambient environment.

Prerequisites

The basic knowledge in the field of materials engineering on the level of introductory courses in Bachelor degree studies. In-depth knowledge of limit states, in particular the problems of testing mechanical properties and failure mechanisms. General orientation in the area of problems of strength calculations of machine parts.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

The course is taught through lectures explaining the basic principles and theory of the discipline.

Assesment methods and criteria linked to learning outcomes

Students are awarded for the course-unit credit on the basis of their individually prepared presentation and subsequent discussion (examinee and their colleagues, lecturer) on the topic delivered. Students choose presentation topics from handbooks, workshop proceedings or journals (in English or German) provided for this purpose.

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

The objective of the course is to make students familiar with problems of the degradation of materials and with methods for assessing the causes of machine part failures on such a level that they are able to solve the respective problem individually or in cooperation with specialized workplaces.

Specification of controlled education, way of implementation and compensation for absences

There are no practical exercises, the only way of assessment is the "defence" of an individually prepared presentation.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

BERK, Joseph Systems Failure Analysis, Materials Park OH: ASM Internationals: 2009, 214 s. ISBN 978-1615030125. (EN)

Recommended reading

1. STRNADEL Bohumil. NAUKA O MATERIÁLU II.Degradační procesy a design konstrukčních materiálů. Ostrava: VŠB-TU Ostrava, 2008. ISBN978-80-248-1842-9. (CS)

Classification of course in study plans

  • Programme M2I-P Master's

    branch M-KSB , 2 year of study, winter semester, compulsory
    branch M-VSR , 2 year of study, winter semester, elective (voluntary)

  • Programme M2V-P Master's

    branch M-VSY , 1 year of study, winter semester, compulsory-optional

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

1. Experimental methods most frequently used in analyses of the causes of failures (metallography - light and TEM microscopy, fractography - macro and micro, inclusive of REM, local microanalysis - EDS, WDS, AES).
2. Degradation of metallic materials in the course of production (metallurgy, welding, metal-forming, machining).
3.Chemical and related structural heterogeneity of metallic materials.
4. Examples of degradation processes in the course of operation (local types of corrosion, corrosion cracking, hydrogen embrittlement, radiation embrittlement, wear).
5. Methodology for assessing the causes of machine part failures, practical demonstrations.
6. Student presentations (see "Exam Form..."), practical demonstrations.